import matplotlib.pyplot as plt line1, = plt.plot([1,2,3], label="Line 1", linestyle='--') line2, = plt.plot([3,2,1], label="Line 2", linewidth=4) # 为第一个线条创建图例 first_legend = plt.legend(handles=[line1], loc=1) # 手动将图例添加到当前轴域 ax = plt.gca()....
x=np.linspace(0,10,100)y=np.vstack([np.sin(x+i*np.pi/4)foriinrange(4)])fori,yiinenumerate(y):plt.plot(x,yi,label=f'Line{i+1}- how2matplotlib.com')plt.title('Multiple Lines with Array Operations')plt.xlabel('x')plt.ylabel('y')plt.legend()plt.show() Python Copy Output:...
plot1.show(frame=True,legend_loc='lower right',legend_numpoints=1,legend_markerscale=0.6,legend_font_size=10) 现在虽然知道legend_numpoints参数可以调节表示线条的图中legend里面点的数量,但对于离散的点,还是没有解决问题。 之后我又参考了python中matplotlib的关于legend官方文档:legend and legend_handler 里...
>>> plot(x, y)#plot x and y using default line style and color>>> plot(x, y,'bo')#plot x and y using blue circle markers>>> plot(y)#plot y using x as index array 0..N-1>>> plot(y,'r+')#ditto, but with red plusses importnumpy as npimportmatplotlib.pyplot as plt X...
legend = plt.legend([p1, p2], ["CH", "US"]) 1. from matplotlib import pyplot as plt import numpy as np train_x = np.linspace(-1, 1, 100) train_y_1 = 2*train_x + np.random.rand(*train_x.shape)*0.3 train_y_2 = train_x**2+np.random.randn(*train_x.shape)*0.3 ...
plt.plot(x,y) plt.xticks(x,()) plt.show() 1. 2. 3. 4. 5. 6. 7. 对于labels参数,我们可以赋予其任意其它的值,如人名,月份等等。 import numpy as np import matplotlib.pyplot as plt x = range(1,13,1) y = range(1,13,1) ...
["axes.unicode_minus"] = False import matplotlib.pyplot as plt import numpy as np x = np.linspace(-2*np.pi,2*np.pi,200) y = np.sin(x) y1 = np.cos(x) plt.plot(x,y,label = r"$\sin(x)$") plt.plot(x,y1,label = r"$\cos(x)$") plt.legend() plt.title("正弦函数和...
准备数据:为多个图形准备数据。分别绘制图形:使用不同的函数绘制不同的图形。显示图例:使用plt.legend函数显示图例,以区分不同的图形。多坐标系绘图:创建画布:使用fig, ax = plt.subplots等函数创建画布和子图。添加图形:在子图上绘制图形,注意网格和刻度的设定。添加网格和轴标签:增强图形的可读性...
plt.plot(X,Y,color='dodgerblue') plt.subplot(212) plt.plot(X,Y1,color = 'r') # 柱状图 柱状图一般用来统计一些类型的数量,例如不同产品的销售额。柱状图一般有两种,一个是传统的,一个是叠加的。 data=[10,35,60,40] plt.bar(range(len(data)),data) ...
animated_line_chart = covid_df.diff().fillna(0).plot_animated(kind='line', period_label=False,add_legend=False)animated_bar_chart = covid_df.plot_animated(n_visible=10) pandas_alive.animate_multiple_plots('examples/example-bar-and-line-chart.gif',[animated_bar_chart, animated_line_chart...