定义二维CNN - LSTM网络,用于预测序列的类别标签,网络结构如下代码所示: 对于序列输入,指定一个序列输入层,其输入大小与输入数据匹配,并设置选项为训练数据中最短序列的长度。使用二维CNN架构来学习一维图像序列中的空间关系,包括四个重复的卷积、批量归一化、ReLU和最大池化层块,并逐渐增加第三和第四卷积层的滤波器...
更多Matlab完整代码及仿真定制内容点击👇智能优化算法 神经网络预测 雷达通信 无线传感器 电力系统信号处理 图像处理 路径规划 元胞自动机 无人机 🔥 内容介绍 在机器学习和人工智能领域,数据分类预测是一个重要的任务。随着深度学习的兴起,卷积神经网络(CNN)和长短期记忆网络(LSTM)等模型已经成为了处理分类预测问题...
定义二维CNN- LSTM网络,用于预测序列的类别标签,网络结构如下代码所示: 对于序列输入,指定一个序列输入层,其输入大小与输入数据匹配,并设置MinLength选项为训练数据中最短序列的长度。使用二维CNN架构来学习一维图像序列中的空间关系,包括四个重复的卷积、批量归一化、ReLU和最大池化层块,并逐渐增加第三和第四卷积层的...
基于贝叶斯优化的 CNN-LSTM 网络在数据分类识别任务中具有显著的优势。通过 CNN 提取局部特征,LSTM 捕捉长期依赖关系,结合贝叶斯优化进行超参数优化,可以提高模型的性能和泛化能力。在本课题中,通过贝叶斯优化算法, 优化CNN-LSTM网络模型的batchsize以及学习率参数,使得网络模型可以达到更优的数据分类效果。
注意程序和数据放在一个文件夹,运行环境为Matlab2023a及以上。 CNN卷积核大小:卷积核大小决定了CNN网络的感受野,即每个卷积层可以捕获的特征的空间范围。选择不同大小的卷积核可以影响模型的特征提取能力。较小的卷积核可以捕获更细粒度的特征,而较大的卷积核可以捕获更宏观的特征。
在MATLAB 中实现 CNN-LSTM 模型,可以充分利用 MATLAB 提供的深度学习工具箱。以下是一个基本的 CNN-LSTM 混合模型的 MATLAB 代码结构,以及如何在 MATLAB 中定义 CNN 层、LSTM 层,并将其连接,最后展示如何编译和训练这个模型,并提供一个简单的数据加载和预处理示例。 1. 基本 CNN-LSTM 模型代码结构 以下是一个...
如果想要更改预测未来数据的数量,只需找到上面的ST变量更改对应数字即可,非常方便,适合新手小白~ 完整代码 如果需要获得文中的完整代码,可查看链接中获取方式: Matlab一键实现CNN-LSTM-Attention模型对未来数据的预测 发布于 2024-12-02 13:52・IP 属地江苏 ...
1.Matlab实现VMD-CNN-LSTM变分模态分解结合卷积神经网络结合长短期记忆神经网络多变量时间序列预测; 2.运行环境为Matlab2021及以上; 3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测; 4.data为数据集,main1_VMD.m、main2_VMD_CNN_LSTM.m为主程序,运行即可,所有文件放在一个文件夹; ...
1.Matlab实现GWO-CNN-LSTM-Mutilhead-Attention灰狼算法优化卷积长短期记忆神经网络融合多头注意力机制多变量时间序列预测,要求Matlab2023版以上; 2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测; 3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹; ...
简介:摘要:该内容展示了基于遗传算法优化的CNN-LSTM时间序列预测模型在matlab2022a中的应用。核心程序包括遗传算法优化过程、网络训练、误差分析及预测结果的可视化。模型通过GA调整CNN-LSTM的超参数,提升预测准确性和稳定性。算法流程涉及初始化、评估、选择、交叉和变异等步骤,旨在找到最佳超参数以优化模型性能。