[2] Zhao, Jianfeng, Xia Mao, and Lijiang Chen. “Speech Emotion Recognition Using Deep 1D & 2D CNN LSTM Networks.” Biomedical Signal Processing and Control 47 (January 2019): 312–23. https://doi.org/10.1016/j.bspc.2018.08.035.
CNN-LSTM分类预测matlab代码 数据为Excel分类数据集。 数据集划分为训练集、验证集、测试集,比例为8:1:1 模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。 参数化设计: 代码中许多常用的参数被设定为变量,方便用户根据实际...
完整代码:MATLAB实现CNN-LSTM卷积长短期记忆神经网络多输入单输出回归预测 %% 清空环境变量 warning off % 关闭报警信息 close all % 关闭开启的图窗 clear % 清空变量 clc %% 导入数据 data = readmatrix('day.csv'); data = data(:,3:16); res=data(randperm(size(data,1)),:); %此行代码用于打乱原...
4.3 BO-CNN-LSTM 基于贝叶斯优化的 CNN-LSTM 网络在数据分类识别任务中具有显著的优势。通过 CNN 提取局部特征,LSTM 捕捉长期依赖关系,结合贝叶斯优化进行超参数优化,可以提高模型的性能和泛化能力。在本课题中,通过贝叶斯优化算法, 优化CNN-LSTM网络模型的batchsize以及学习率参数,使得网络模型可以达到更优的数据分类效果。
CNN-LSTM模型代码实现 CNN-LSTM的tensorflow版本实现: def cnn_lstm(x): # 以正太分布初始化weight def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) #以0.1这个常量来初始化bias def bias_variable(shape): ...
综上所述,基于CNN-LSTM的风电功率预测研究具有重要的学术价值和实际应用意义。通过不断优化和完善预测模型,可以为电力系统的稳定运行和优化调度提供更加可靠的技术支持。 2 运行结果 部分代码: % 指标计算 disp('………训练集误差指标………') [mae1,rmse1,mape1,error1]=calc_error(T_train1,T_sim1'); ...
matlab2022a 3.部分核心程序 figure plot(Error2,'linewidth',2); grid on xlabel('迭代次数'); ylabel('遗传算法优化过程'); legend('Average fitness'); [V,I] = min(JJ); X = phen1(I,:); LR = X(1); numHiddenUnits1 = floor(X(2))+1;% 定义隐藏层中LSTM单元的数量 ...
1 卷积神经网络(CNN)定义 卷积神经网络(convolutional neural network, CNN),是一种专门用来处理具有类似网格结构的数据的神经网络。卷积网络是指那些至少在网络的一层中使用卷积运算来替代一般的矩阵乘法运算的神经网络。