聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。 K-Means算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的...
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚...
K-means聚类算法(又称K-均值聚类算法),是著名的划分聚类分割方法。该算法具有运算速度快,执行过程简单的优点。 工作原理: 首先随机选取K个点,每个点初始地代表每个簇的聚类中心,然后计算剩余各个样本带到聚类中心的距离,将它赋给最近的簇,接着重新计算每一簇的平均值,整个过程不断重复,如果相邻两次调整没有明显变化...
K-means聚类算法是一种迭代求解的聚类分析算法,其基本原理是: 初始随机选定K个对象作为初始聚类中心。 计算每个对象与各个聚类中心之间的距离,将每个对象分配到距离它最近的聚类中心。 聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类中心会根据聚类中现有的对象被重新计算。 重复上述步骤,直到满足某...
以K-means算法为例,实现了如下功能 自动生成符合高斯分布的数据,函数名为gaussianSample.m 实现多次随机初始化聚类中心,以找到指定聚类数目的最优聚类。函数名myKmeans.m 自动寻找最佳聚类数目,函数名称besKmeans.m,并绘制了拐点图(L图) gaussianSample.m ...
常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。 主要聚类算法分类 类别包括的主要算法划分的方法K-MEANS算法(K平均)、K-MEDOIDS算法(K中心点)、CLARANS算法(基于选择的算法)层次的方法BIRCH算法(平衡迭代规约和聚类)、CURE算法(代表点聚类)、CHAMELEON算法(动态模型)基于密度的方法DBSCAN算法(基于...
51CTO博客已为您找到关于kmeans聚类算法matlab的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及kmeans聚类算法matlab问答内容。更多kmeans聚类算法matlab相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
K-means 算法 matlab 代码 function [Idx, Center] = K_means(X, xstart) % K-means 聚类 % Idx 是数据点属于哪个类的标记,Center 是每个类的中心位置 % X 是全部二维数据点,xstart 是类的初始中心位置 len = length(X); %X 中的数据点个数 Idx = zeros(len, 1); %每个数据点的 Id,即属于哪个...
k- means 分区中的每个集群由成员对象和质心(或中心)组成。在每个集群中,kmeans最小化质心与集群所有成员对象之间的距离总和。 kmeans对于支持的距离度量,以不同的方式计算质心簇。 可以使用可用于的名称-值对参数来控制最小化的细节 kmeans;例如,可以指定聚类质心的初始值和算法的最大迭代次数。默认情况下,kmean...