%函数名:dtw %输入:t(向量,理论路径);r(向量,实际路径) %输出:z(两个数据的相似度) function z = dtw(t,r) n = size(t,2);%n为向量t的长度 m = size(r,2);%m为向量r的长度 %构造矩阵d为帧匹配距离矩阵 d = zeros(n,m);%先构造一个空的矩阵,长和宽分别为n和m for a = 1:n for b...
DTW 本质上是一个简单的动态规划算法,是用来计算两个维数不同的向量之间的相似度的问题,即计算向量 M1 和 M2 的最短距离。是一种非常常用的语音匹配算法。 对两个不同维数的语音向量 m1 和 m2进行匹配(m1 和 m2 的每一维也是一个向量,是语音每一帧的特征值,这里利用的是 MFCC 特征)。设两个向量的长度为...
DTW 本质上是一个简单的动态规划算法,是用来计算两个维数不同的向量之间的相似度的问题,即计算向量 M1 和 M2 的最短距离。是一种非常常用的语音匹配算法。 对两个不同维数的语音向量m1 和 m2进行匹配(m1 和 m2 的每一维也是一个向量,是语音每一帧的特征值,这里利用的是 MFCC 特征)。设两个向量的长度为 ...
DTW算法是为了解决欧式距离等方法不能解决的序列长度不等的问题,计算两个时间长度不同的序列的相似程度。
动态时间规整DTW是一个典型的优化问题,它用满足一定条件的的时间规整函数W(n)描述测试模板和参考模板的时间对应关系,求解两模板匹配时累计距离最小所对应的规整函数。 假设我们有两个时间序列Q和C,他们的长度分别是n和m:(实际语音匹配运用中,一个序列为参考模板,一个序列为测试模板,序列中的每个点的值为语音序列...
16页的试验文档。以一个能识别数字0~9的语音识别系统的实现过程为例,阐述了基于DTW算法的特定人孤立词语音识别的基本原理和关键技术。其中包括对语音端点检测方法、特征参数计算方法和DTW算法实现。程序已调通,可直接运行。需要或有问题可以私聊,留言。不包含售后。程序保证可直接运行。#信号处理...
需要请联系我Q:1027506536Matlab手势识别基于DTW、Frechet、Hausdorff算法(完整代码,GUI界面)#用三种算法DTW算法、Frechet算法、Hausdorff算法对手势进行识别!#本代码原创,绝对可靠,需要请联系我,我基本都在,能秒回!, 视频播放量 301、弹幕量 0、点赞数 1、投硬币
1 DTW原理 动态时间规整DTW是一个典型的优化问题,它用满足一定条件的的时间规整函数W(n)描述测试模板和参考模板的时间对应关系,求解两模板匹配时累计距离最小所对应的规整函数。 假设我们有两个时间序列Q和C,他们的长度分别是n和m:(实际语音匹配运用中,一个序列为参考模板,一个序列为测试模板,序列中的每个点的值...
动态时间规整DTW是一个典型的优化问题,它用满足一定条件的的时间规整函数W(n)描述测试模板和参考模板的时间对应关系,求解两模板匹配时累计距离最小所对应的规整函数。 假设我们有两个时间序列Q和C,他们的长度分别是n和m:(实际语音匹配运用中,一个序列为参考模板,一个序列为测试模板,序列中的每个点的值为语音序列...
所以在孤立词语音识别中,DTW算法仍然得到广泛的应用。 无论在训练和建立模板阶段还是在识别阶段,都先采用端点算法确定语音的起点和终点.已存入模板库的各个词条称为参考模板,一个参考模板可表示为R={R(1),R(2),……,R(m),……,R(M)},m为训练语音帧的时序标号,m=1为起点语音帧,m=M为终点语音帧,因此M...