1. BP神经网络预测算法简介 说明:1.1节主要是概括和帮助理解考虑影响因素的BP神经网络算法原理,即常规的BP模型训练原理讲解(可根据自身掌握的知识是否跳过)。1.2节开始讲基于历史值影响的BP神经网络预测模型。 使用BP神经网络进行预测时,从考虑的输入指标角度,主要有两类模型: 1.1 受相关指标影响的BP神经网络算法原理 ...
',相应的均方误差为:',num2str(MSE)])%% 构建最佳隐含层节点的BP神经网络net=newff(inputn,outputn,hiddennum_best,transform_func,train_func);% 网络参数net.trainParam.epochs=1000;% 训练次数net.trainParam.lr=0.01;% 学习速率net.trainParam.goal=0.000001;% 训练目标最小误差%% 网络训练net=train(net,input...
本文选自《MATLAB中用BP神经网络预测人体脂肪百分比》。 点击标题查阅往期内容 【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析 Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析 深度学习实现自编码器Autoencoder神经网络异常检测心电图ECG时间序列spss modeler用决策树神经网络预测ST的股票 Python...
plot(test_simu,'rs-','linewidth',1.5) legend('实际值','预测值') xlabel('测试样本'),ylabel('指标值') title('BP预测值和实际值的对比') set(gca,'fontsize',12) % BP测试集的预测误差图 figure plot(error,'bo-','linewidth',1.5) xlabel('测试样本'),ylabel('预测误差') title('BP神经网...
神经网络可以应用于模式识别的各个环节,如特征提取、聚类分析、边缘检测、信号增强、噪声抑制、数据压缩等。模式识别是人工神经网络特别适宜求解的一类问题,神经网络模式识别技术在各领域中的广泛应用是神经网络技术发展的一个重要侧面。 (2)人工智能。专家系统是人工智能领域研究时间最长,应用最成功的技术,但人们在应用...
首先准备好需要使用的数据。 选择工具箱中的APP ——> 使用BP神经网络进行预测 进入到BP神经网络工具箱界面 选择NEXT 将特征值和目标值放入到对应的input和target中,并且选择Matrix Row 选择Next 选择默认的数据集划分比例 选择Next 选择合适个数的神经元,一般5-10个,...
BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。 BP网络由输入层、隐层和输出层组成,隐层可以有一层或多层,图2是m×k×...
BP RBF GRNN 分析比较 简介 1.本次我们将以25M晶振的温度频偏曲线数据为基础,进行神经网络的搭建学习,最后消除绝大部分频差。见下图,蓝色区域是有可能达到的偏差,我们通过学习来给一个相应的调整量使其尽量回到0频偏。本次仿真的输入有两个特征:温度和频偏;输出的为调整量。
基于MATLAB的BP神经网络预测计算的GUI界面如下:加载数据——输入样本数据个数、训练数据个数、预测数据个...
003_基于BP神经网络的时间序列预测 Matlab代码实现过程 11:59 004_基于支持向量回归(SVR)的数据回归预测 Matlab代码实现过程 09:42 005_基于支持向量机(SVM)的数据分类预测 Matlab代码实现过程 10:29 006_基于支持向量机(SVM)的时间序列预测 Matlab代码实现过程 ...