Mask RCNN继承自Faster RCNN主要有三个改进: feature map的提取采用了FPN的多尺度特征网络; ROI Pooling改进为ROI Align; 在RPN后面,增加了采用FCN结构的mask分割分支。 网络结构如下图所示: mask-rcnn网络结构 可以看出,Mask RCNN 是一种先检测物体,再分割的思路,简单直接,在建模上也更有利于网络的学习。 骨...
下图是Mask RCNN的结构. Mask RCNN基于Faster RCNN进行优化,其主要贡献是提出了RoI Align用以替换RoI pooling,得到更为精细的proposal特征. 另外Mask RCNN在RCNN部分还新增了并行的mask预测分支,针对每个RoI进行pixel-wise的预测. 所以Mask RCNN在完成目标检测的同时,还实现了高质量的语义分割,最终呈现的效果便是...
小结:R-CNN是在原图找到2000个候选区域,然后分别对候选区域卷积;Fast R-CNN 先对原图卷积,然后在卷积中找到2000个候选区域,然后再卷积,也就是上图的ConvNet处改进了计算量,但是也到2s一帧。 可以看到,FastRCNN已经是很快了,但是还有优化空间,其中Selective Search占据了大量时间。‘ 优点:使用了简化版SPP(ROI Po...
在实际应用中,R-CNN系列网络结构已被广泛应用于各种场景,如人脸识别、行人检测、物体跟踪等。通过调整网络结构和参数,我们可以根据具体任务的需求来优化网络性能。同时,随着硬件设备的不断升级和算法的优化,R-CNN系列网络结构的实时性能也将得到进一步提升。 总之,R-CNN系列网络结构的发展历程为我们展示了深度学习在目...
原Faster R-CNN输出两类值:class label和bounding-box offset.Mask R-CNN加入一路object mask分支输出.object mask要求比前两个具有更精细的空间布局特征.mask分支作用于Fast R-CNN,而RPN保持不变. 多任务损失定义为: L = Lcls+ Lbox+ Lmask. Lcls+ Lbox保持不变,mask分支输出K个二值mask矩阵(每个像素经过...
网络结构如下图所示: 可以看出,Mask RCNN 是一种先检测物体,再分割的思路,简单直接,在建模上也更有利于网络的学习。 骨干网络 FPN 卷积网络的一个重要特征:深层网络容易响应语义特征,浅层网络容易响应图像特征。Mask RCNN的使用了ResNet和FPN结合的网络作为特征提取器。
PANet 是基于Mask R-CNN进行改进后的网络,改进的三个点分别为: 原始Mask R-CNN 没有很好地利用低层信息。高层的 Feature maps 关注物体整体,低层的 Feature maps 关注物体的纹理图案。使用低层的信息可以对物体进行更好地定位。对此 PANet 增加了 Bottom-up Path Augmentation...
下面总结一下Mask RCNN的网络: 骨干网络ResNet-FPN,用于特征提取,另外,ResNet还可以是:ResNet-50,ResNet-101,ResNeXt-50,ResNeXt-101; 头部网络,包括边界框识别(分类和回归)+mask预测。头部结构见下图: 第二个分支对每一个感兴趣区域(Region of Interest,RoI)预测分割掩模,它利用了一个小的全卷积网络结构[2...
FPN结构中包括自下而上,自上而下和横向连接三个部分,如下图所示。这种结构可以将各个层级的特征进行融合,使其同时具有强语义信息和强空间信息,在特征学习中算是一把利器了。 FPN实际上是一种通用架构,可以结合各种骨架网络使用,比如VGG,ResNet等。Mask RCNN文章中使用了ResNNet-FPN网络结构。如下图: ...
基于Mask-RCNN深度学习网络的人员检测算法是一种用于检测图像中人员目标的方法。该算法结合了目标检测和实例分割的能力,能够准确地定位人员目标并生成像素级的掩膜。Mask-RCNN是一种基于深度学习的目标检测算法,它是在Faster-RCNN的基础上进行扩展的。Mask-RCNN通过添加一个Mask Head网络来预测每个候选框的语义分割掩码...