可能是转换mask错误 同
反过来想,这其实类似于正负样本极不均衡的情况,网络拟合了大部分负样本后,即使正样本拟合得较差,整体的 loss 也已经很低了。 发现这个问题后,我就在想可不可以先用 Faster RCNN 之类的先检测出这些病灶区域的候选框,再在框内做分割,甚至,能不能直接把 Faster RCNN 和分割部分做成一个统一的模型来处理。后来发...
Loss=L_{faster_rcnn}+L_{mask}=L_{rpn}+L_{fast_rcnn}+L_{mask}\\ Faster RC...
反过来想,这其实类似于正负样本极不均衡的情况,网络拟合了大部分负样本后,即使正样本拟合得较差,整体的 loss 也已经很低了。 发现这个问题后,我就在想可不可以先用 Faster RCNN 之类的先检测出这些病灶区域的候选框,再在框内做分割,甚至,能不能直接把 Faster RCNN 和分割部分做成一个统一的模型来处理。后来发...
Mask R-CNN作为非常经典的实例分割(Instance segmentation)算法,在图像分割领域可谓“家喻户晓”。Mask R-CNN不仅在实例分割任务中表现优异,还是一个非常灵活的框架,可以通过增加不同的分支完成目标分类、目标检测、语义分割、实例分割、人体姿势识别等多种不同的任务。-TOP9- SegNet: A Deep Convolutional Encoder...
整个MaskRCNN模型的构建代码在mrcnn/model.py文件中,可以详细浏览浏览。 此处介绍第四部分Losses代码,因为计算loss必须要有prediction和truth,所以在此还将介绍input数据和生成的label/target数据过程。 1.input代码 input代码位于mrcnn/model.py文件中: #---Inputs---input_image=KL.Input(shape=[None,None,3]...
这个时候容易误判为判别器loss在稳步下降。不过实际上可以发现这个"下降"从3.25降到了3.05,所以本质上还是小范围波动。 生成器loss loss在3.0到3.6之间来回上下波动。类似的,观察Smoothing为0.999时的情况: 给人的感觉是生成器loss一直在往上跑,可能会怀疑生成器没在进一步学习;但实际上仔细看容易发现只是从3.25跑到了...
cnn损失函数曲线 mask rcnn的损失函数 之前在一次组会上,师弟诉苦说他用 UNet 处理一个病灶分割的任务,但效果极差,我看了他的数据后发现,那些病灶区域比起整张图而言非常的小,而 UNet 采用的损失函数通常是逐像素的分类损失,如此一来,网络只要能够分割出大部分背景,那么 loss 的值就可以下降很多,自然无法精细地...
(1)这部分内容主要对创新点的详细讲解,mask rcnn的输出由三部分构成:① class label预测;② bounding box regression;③ mask分支(目标空间位置的准确提取,以及像素与像素的对齐。) (2)损失计算 对于每一个采样的RoI进行多任务的loss计算,L_all = L_cls + L_box + L_mask,即:总的损失 = 分类损失 + bo...
Loss 设计:Loss 由分类损失、边界框回归损失和 mask 损失三部分组成。其中分类损失和边界框回归损失同 SSD,mask 损失为预测 mask 和 ground truth mask 的逐像素二进制交叉熵。 Mask 裁剪:为了改善小目标的分割效果,在推理时会首先根据检测框进行裁剪,再阈值化。而在训练时,会使用 ground truth 框来进行裁剪,并...