以前的目标检测算法,即 R-CNN 通常分别学习定位和分类阶段,这使得训练成本更高。此外,这些算法在测试时非常慢,阻碍了实时应用程序。 Fast R-CNN 联合学习检测对象的空间位置并对它们进行分类。 R-CNN 很慢,因为对每个对象提议都进行了前向传递。虽然 SPP-Nets 确实解决了这个问题并在测试时将 R-CNN 加速了 100...
以前的目标检测算法,即 R-CNN 通常分别学习定位和分类阶段,这使得训练成本更高。此外,这些算法在测试时非常慢,阻碍了实时应用程序。 Fast R-CNN 联合学习检测对象的空间位置并对它们进行分类。 R-CNN 很慢,因为对每个对象提议都进行了前向传递。虽然 SPP-Nets 确实解决了这个问题并在测试时将 R-CNN 加速了 100...
以前的目标检测算法,即 R-CNN 通常分别学习定位和分类阶段,这使得训练成本更高。此外,这些算法在测试时非常慢,阻碍了实时应用程序。 Fast R-CNN 联合学习检测对象的空间位置并对它们进行分类。 R-CNN 很慢,因为对每个对象提议都进行了前向传递。虽然 SPP-Nets 确实解决了这个问题并在测试时将 R-CNN 加速了 100...
Mask R-CNN是在Faster R-CNN的基础上进行了改进,其主要改进是在候选框分类阶段引入了语义分割分支,用于生成候选框的像素级掩码。具体来说,Mask R-CNN首先使用共享的特征提取网络对图像进行特征提取,然后使用区域建议网络生成候选框。接下来,Mask R-CNN将每个候选框的特征与对应的图像特征进行融合,然后分别通过分类分...
提出新的 FPN 网络架构来计算语义丰富的多尺度特征表示。 使用CNN 的中间层作为多尺度特征和图像金字塔,并使用这些特征训练 RPN 和骨干网络。 Mask R-CNN Mask R-CNN 的提出是为了解决一个稍微不同的实例分割问题。简而言之,这个问题是对象检测和语义分割的结合。如上所示,该任务旨在生成划分对象的像素级边界。
Mask R-CNN详解 1. 骨干架构(FPN) 在第一章中,我们介绍过卷积网络的一个重要特征:深层网络容易响应语义特征,浅层网络容易响应图像特征。但是到了物体检测领域,这个特征便成了一个重要的问题,高层网络虽然能响应语义特征,但是由于Feature Map的尺寸较小,含有的几何信息并不多,不利于物体检测;浅层网络虽然包含比较多...
Mask R-CNN详解 1. 骨干架构(FPN) 在第一章中,我们介绍过卷积网络的一个重要特征:深层网络容易响应语义特征,浅层网络容易响应图像特征。但是到了物体检测领域,这个特征便成了一个重要的问题,高层网络虽然能响应语义特征,但是由于Feature Map的尺寸较小,含有的几何信息并不多,不利于物体检测;浅层网络虽然包含比较多...
提出新的 FPN 网络架构来计算语义丰富的多尺度特征表示。 使用CNN 的中间层作为多尺度特征和图像金字塔,并使用这些特征训练 RPN 和骨干网络。 Mask R-CNN Mask R-CNN 的提出是为了解决一个稍微不同的实例分割问题。简而言之,这个问题是对象检测和语义分割的结合。如上所示,该任务旨在生成划分对象的像素级边界。
最后,整个Mask RCNN网络结构包含两部分,一部分是backbone用来提取特征(上文提到的采用ResNet-50或者ResNet-101作为特征提取器提取特征),另一部分是head用来对每一个ROI进行分类、框回归和mask预测。为了产生对应的Mask,文中提出了两种架构,即左边的Faster R-CNN/ResNet和右边的Faster R-CNN/FPN,如图11所示。...
最后,整个Mask RCNN网络结构包含两部分,一部分是backbone用来提取特征(上文提到的采用ResNet-50或者ResNet-101作为特征提取器提取特征),另一部分是head用来对每一个ROI进行分类、框回归和mask预测。为了产生对应的Mask,文中提出了两种架构,即左边的Faster R-CNN/ResNet和右边的Faster R-CNN/FPN,如图11所示。...