以前的目标检测算法,即 R-CNN 通常分别学习定位和分类阶段,这使得训练成本更高。此外,这些算法在测试时非常慢,阻碍了实时应用程序。 Fast R-CNN 联合学习检测对象的空间位置并对它们进行分类。 R-CNN 很慢,因为对每个对象提议都进行了前向传递。虽然 SPP-Nets 确实解决了这个问题并在测试时将 R-CNN 加速了 100...
由于前面进行了多次卷积和池化,减小了对应的分辨率,mask分支开始利用反卷积进行分辨率的提升,同时减少通道的个数,maskrcnn使用到了FPN网络,通过输入单一尺度的图片,最后可以对应的特征金字塔,首先将ROI变化为14x14x256的feature,然后进行了5次相同的卷积操作,然后进行反卷积操作,最后输出28x28x80的mask,即输出了...
Mask R-CNN(Mask Region-based Convolutional Neural Network),掩膜基于区域的卷积神经网络 RCNNs:region-based convolutional neural networks,基于区域的卷积神经网络 FPN(Feature Pyramid Network),特征金字塔网络 论文地址:Feature Pyramid Networks for Object Detection 中文详解(点击) ResNet101 ,中文详解 MS COCO(M...
https:///matterport/Mask_RCNN/releases 在里面的 Mask R-CNN 2.0 下找到 “mask_rcnn_coco.h5” 并下载,放在根目录。 我的目录结构如下: 在anaconda里创建虚拟环境 在Mask RCNN 源码目录下的 README.md可以查看,以下是我的安装版本: conda create -n MaskRCNN python=3.6 //名为MaskRCNN,python版本为...
R-CNN 2014 年的论文提出了基于 CNN 的两阶段检测算法的朴素版本,该算法在以下论文中得到了改进和加速。如上图所述,整个流水线由三个阶段组成: 生成区域建议:模型必须在图像中绘制候选对象,独立于类别。 第二阶段是一个全卷积神经网络,计算每个候选区域的特征。
特征金字塔网络 (FPN) 特征化图像金字塔(图 a)提供多尺度特征表示,通过支持尺度不变性可以方便地进行对象检测。该模型必须能够检测图像中物体的所有尺度,改变金字塔的层数可以很容易地抵消物体的尺度方差。但它显然需要相当长的时间来计算多层次的特征,并且没有用于 Fast/Faster R-CNN 等管道(图 b)。
2 Faster R-CNN 代码详解 为方便算法与代码的解读,Faster R-CNN 模型整体流程如下所示: 图片输入到 ResNet 中进行特征提取,输出 4 个特征图,按照特征图从大到小排列,分别是 C2 C3 C4 C5,stride = 4,8,16,32 4 个特征图输入到 FPN 模块中进行特征融合,输出 5 个通道数相同的特征图,分别是 p2 ~ p6...
Mask R-CNN是由华人学者何凯明教授主导的一个多任务深度学习模型,能够在一个模型中完成图片中实例的分类和定位,并绘制出像素级的遮罩(Mask)来完成分割任务。Mask R-CNN是一个较为复杂的模型,使用了若干不同的网络模型,包括ResNet,FPN,RPN以及分类和回归模型。下面,我们对Mask R-CNN进行逐步的剖析。
Mask R-CNN详解 1. 骨干架构(FPN) 在第一章中,我们介绍过卷积网络的一个重要特征:深层网络容易响应语义特征,浅层网络容易响应图像特征。但是到了物体检测领域,这个特征便成了一个重要的问题,高层网络虽然能响应语义特征,但是由于Feature Map的尺寸较小,含有的几何信息并不多,不利于物体检测;浅层网络虽然包含比较多...
可以看出,Mask RCNN 是一种先检测物体,再分割的思路,简单直接,在建模上也更有利于网络的学习。 骨干网络 FPN 卷积网络的一个重要特征:深层网络容易响应语义特征,浅层网络容易响应图像特征。Mask RCNN的使用了ResNet和FPN结合的网络作为特征提取器。 FPN的代码出现在./mrcnn/model.py中,核心代码如下: ...