大饼:概率论与统计学5——马尔科夫链(Markov Chain)861 赞同 · 48 评论文章 马尔可夫蒙特卡洛方法是一种算法的集合,可以利用马尔可夫链去模拟复杂的分布模型,对指定的分布模型进行随机采样。该方法极大地扩展了可以模拟的分布模型,比如高维度的联合分布等。
---https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo 也就是说,MCMC方法的目的是从一个分布中采样。一般的设定是,我们并不知道 f(x) 的解析形式,只能通过query来得到正比于 f(x) 的值g(x)=kf(x) 。这些在实际场景中比较常见,比如贝叶斯方法中,后验概率通常写为 p(z|x)=\frac{p(x|z)p(...
马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布pp的马尔科夫链对目标分布pp进行采样. 预备知识 学习MCMC需要以下预备知识 条件分布: MCMC常常被用于从条件分布中采样. 蒙特卡洛估计(Monte Carlo estimation) 马尔科夫链(Markov chains) 学习目标 知道基本的问题设定: ...
1990年代MCMC(Markov Chain Monte Carlo ,马尔科夫链蒙特卡洛)计算方法引入到贝叶斯统计学之后,一举解决了这个计算的难题。可以说,近年来贝叶斯统计的蓬勃发展,特别是在各个学科的广泛应用和MCMC方法的使用有着极其密切的关系。 (2)蒙特卡洛方法(Monte Carlo) 蒙特卡洛方法是一种随机模拟方法,随机模拟的思想由来已久(参见...
徐亦达机器学习:Markov Chain Monte Carlo 马尔可夫蒙特卡洛(MCMC)【2015年版-全集】 课件地址:https://github.com/roboticcam/machine-learning-notes/blob/master/README.md 徐亦达教授主页:Richardxu.com 人工智能 科学 公开课 科技 计算机技术 教育 MCMC ...
区块链的scalability包括两个部分,一是存储,一是交易速度,针对这两个方面,很多的工作和项目在进行。一种方法是从架构层面来解决,它又有两种方式,一是分片(sharding),一是侧链(sidechain)。另一种探索是从数据结构和共识算法上来解决,它包括完全改变现状的区块结构,比如DAG。还包括不同的共识算法,比如POW,POS,DPOS,...
因为在高维空间里,因为高维空间得数据具有稀疏性,选取的q(z)如果和p(z)没有很相近,就会导致采样的效率很低,所以针对高维的随机变量z(对应的数值积分问题)的采样点获取,提出了Monte Carlo方法。 怎么随机? 怎么近似? 怎么采样? 由于markov chain的各个时刻的随机变量zt都服从于某一个概率分布p(zt),如果每个zt的...
Markov Chain & Monte Carlo (MCMC)是推断(Inference)中近似推断中的随机推断。 Monte Carlo Method Monte Carlo Method是对一类随机方法的特性的概括,即那些“采样越多,越近似最优解”的方法[1]。 Monte Carlo Method是一种基于采样的随机近似方法。推断的任务是求后验概率(posterior probability),其中为观测变量(...
马尔可夫链蒙特卡罗法(Markov Chain Monte Carlo,MCMC) 文章目录 1. 蒙特卡罗法 2. 马尔可夫链 3. 马尔可夫链蒙特卡罗法 4. Metropolis-Hastings 算法 5. 吉布斯抽样 蒙特卡罗法(Monte Carlo method),也称为统计模拟方法(statistical simulation method),是通过从概率模型的随机抽样进行近似数值计算的方法 马尔可夫...
其目的是通过monte carlo方法产生具有平稳分布的Markov chain。 基本思想通过迭代的Monte Carlo模拟来产生Markov chain,该链在达到平稳时就具有我们希望的后验分布。 基本原理:通过建立一个以后验分布为平稳分布的Markov chain来产生后验分布的样本,基于这些样本就可以对后验分布进行各种统计推断。