(State Space Model, SSM) SSM经常用于 控制理论 ,其功能类似于Transformer和RNN,用于处理时间序列,如文本,信号等。 在传统上,连续的时间t,SSM就是将输入序列x(t)映射到潜在状态表示h(t)(即描述状态表示 ),并推导出预测的输出序列y(t) 。比如在图1中可以表示为: x(t)-在迷宫中向左和向下移动; h(t)-...
这都要归功于作者提出的一种新架构 —— 选择性状态空间模型( selective state space model),该架构是 Mamba 论文作者 Albert Gu 此前主导研发的 S4 架构(Structured State Spaces for Sequence Modeling )的一个简单泛化。 在Mamba 论文发布后,很多研究者都对 SSM(state space model)、S4 等相关研究产生了好奇...
SSM是一种基础科学模型,广泛应用于控制论、计算神经科学、信号处理等领域。论文探讨了状态空间序列模型的优点,并阐述了如何利用它们解决一般序列建模难题,同时克服自身的局限性。
挑战包括:(1)一般 SSM 比同等大小的 RNN 和 CNN 慢得多;(2)它们在记忆长依赖关系时会很吃力,例如继承了 RNN 的梯度消失问题。 作者通过 SSM 的新算法和理论来应对这些挑战。 利用结构化 SSM 进行高效计算(S4) 遗憾的是,由于状态表示 x (t) ∈ R^N 对计算和内存的要求过高(挑战二),通用的 SSM 在实践...
这都要归功于作者提出的一种新架构 —— 选择性状态空间模型( selective state space model),该架构是 Mamba 论文作者 Albert Gu 此前主导研发的 S4 架构(Structured State Spaces for Sequence Modeling )的一个简单泛化。 在Mamba 论文发布后,很多研究者都对 SSM(state space model)、S4 等相关研究产生了好奇...
在Mamba 论文发布后,很多研究者都对 SSM(state space model)、S4 等相关研究产生了好奇。其中,有位研究者表示自己要在飞机上把这些论文都读一下。对此,Albert Gu 给出了更好的建议:他的博士论文其实把这些进展都梳理了一下,读起来可能更有条理。 在论文摘要中,作者写到,序列模型是深度学习模型的支柱,已在科学...
在Mamba 论文发布后,很多研究者都对 SSM(state space model)、S4 等相关研究产生了好奇。其中,有位研究者表示自己要在飞机上把这些论文都读一下。对此,Albert Gu 给出了更好的建议:他的博士论文其实把这些进展都梳理了一下,读起来可能更有条理。 在论文摘要中,作者写到,序列模型是深度学习模型的支柱,已在科学...
在Mamba 论文发布后,很多研究者都对 SSM(state space model)、S4 等相关研究产生了好奇。其中,有位研究者表示自己要在飞机上把这些论文都读一下。对此,Albert Gu 给出了更好的建议:他的博士论文其实把这些进展都梳理了一下,读起来可能更有条理。 在论文摘要中,作者写到,序列模型是深度学习模型的支柱,已在科学...
1.和Transformer的注意力机制是什么关系?能否把两者结合使用? 2.能否通过将曼巴模型重新铸造为矩阵乘法来加快曼巴模型的训练吗? Mamba-2 于是开发 SSM 和(线性)注意力之间的连接框架,我们称之为状态空间对偶 (SSD) +3 发布于 2024-06-04 22:24・IP 属地广东 ...