SSM经常用于控制理论,其功能类似于Transformer和RNN,用于处理时间序列,如文本,信号等。 在传统上,连续的时间t,SSM就是将输入序列x(t)映射到潜在状态表示h(t)(即描述状态表示 ),并推导出预测的输出序列y(t) 。比如在图1中可以表示为: x(t)-在迷宫中向左和向下移动; h(t)-到出口的距离和x/y坐标; y(t)-再次向左移动以
在Mamba 论文发布后,很多研究者都对 SSM(state space model)、S4 等相关研究产生了好奇。其中,有位研究者表示自己要在飞机上把这些论文都读一下。对此,Albert Gu 给出了更好的建议:他的博士论文其实把这些进展都梳理了一下,读起来可能更有条理。 在论文摘要中,作者写到,序列模型是深度学习模型的支柱,已在科学...
SSM是一种基础科学模型,广泛应用于控制论、计算神经科学、信号处理等领域。论文探讨了状态空间序列模型的优点,并阐述了如何利用它们解决一般序列建模难题,同时克服自身的局限性。
Mamba基于Albert Gu提出的“选择性状态空间模型”,这是在先前主导研发的S4架构基础上的简单泛化。Mamba通过线性状态空间模型解决了一般序列建模难题,同时克服了自身的局限性。Albert Gu的博士论文:论文详细梳理了SSM、S4等研究进展,使读者能够更条理清晰地了解这些进展。论文探讨了SSM的背景、特性以及与NDE...
在Mamba 论文发布后,很多研究者都对 SSM(state space model)、S4 等相关研究产生了好奇。其中,有位研究者表示自己要在飞机上把这些论文都读一下。对此,Albert Gu 给出了更好的建议:他的博士论文其实把这些进展都梳理了一下,读起来可能更有条理。 在论文摘要中,作者写到,序列模型是深度学习模型的支柱,已在科学...
在Mamba 论文发布后,很多研究者都对 SSM(state space model)、S4 等相关研究产生了好奇。其中,有位研究者表示自己要在飞机上把这些论文都读一下。对此,Albert Gu 给出了更好的建议:他的博士论文其实把这些进展都梳理了一下,读起来可能更有条理。 在论文摘要中,作者写到,序列模型是深度学习模型的支柱,已在科学...
在Mamba 论文发布后,很多研究者都对 SSM(state space model)、S4 等相关研究产生了好奇。其中,有位研究者表示自己要在飞机上把这些论文都读一下。对此,Albert Gu 给出了更好的建议:他的博士论文其实把这些进展都梳理了一下,读起来可能更有条理。 在论文摘要中,作者写到,序列模型是深度学习模型的支柱,已在科学...
在Mamba 论文发布后,很多研究者都对 SSM(state space model)、S4 等相关研究产生了好奇。其中,有位研究者表示自己要在飞机上把这些论文都读一下。对此,Albert Gu 给出了更好的建议:他的博士论文其实把这些进展都梳理了一下,读起来可能更有条理。 在论文摘要中,作者写到,序列模型是深度学习模型的支柱,已在科学...
在Mamba 论文发布后,很多研究者都对 SSM(state space model)、S4 等相关研究产生了好奇。其中,有位研究者表示自己要在飞机上把这些论文都读一下。对此,Albert Gu 给出了更好的建议:他的博士论文其实把这些进展都梳理了一下,读起来可能更有条理。 在论文摘要中,作者写到,序列模型是深度学习模型的支柱,已在科学...