GitHub is where people build software. More than 150 million people use GitHub to discover, fork, and contribute to over 420 million projects.
Convert Machine Learning Code Between Frameworks Ivy enables you to: Convert ML models, tools and libraries between frameworks while maintaining complete functionality using ivy.transpile Create optimized graph-based models and functions in any native framework (PyTorch, TensorFlow, etc..) with ivy.trace...
The default container image that's used by GitHub Codespaces includes a set of machine learning libraries that are preinstalled in your codespace. For example, Numpy, pandas, SciPy, Matplotlib, seaborn, scikit-learn, Keras, PyTorch, Requests, and Plotly. For more information about th...
https://github.com/trekhleb/homemade-machine-learning/blob/master/homemade/logistic_regression/logistic_regression.py Demo |逻辑回归-线性边界:基于花瓣长度和花瓣宽度的鸢尾花类预测 https://nbviewer.jupyter.org/github/trekhleb/homemade-machine-learning/blob/master/notebooks/logistic_regression/logistic_re...
https://github.com/trekhleb/homemade-machine-learning 【注:划线链接部分请点击底部“阅读原文”访问】 对于此仓库的Octave / MatLab版本,请查看machine-learning-octave项目。 本仓库包含在Python中实现的流行机器学习算法的示例,其中包含算法背后的解释。 每个算法都有交互式Jupyter Notebook演示,你可以使用它来训练...
importrequestsimportos tf_code = requests.get("https://raw.githubusercontent.com/tensorflow/tensorflow/r1.8/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py")withopen(os.path.join(exp_dir,"mnist_with_summaries.py"),"w")asfile: file.write(tf_code.text) ...
开始使用 GitHub Actions 以便在 Azure 机器学习上训练模型。 本文介绍如何创建生成机器学习模型并将其部署到 Azure 机器学习的GitHub Actions工作流。 你将基于纽约出租车数据集训练 scikit-learn 线性回归模型。 GitHub Actions 使用存储库中 /.github/workflows/ 路径下的工作流 YAML (.yml) 文件。 此定义包含组成...
《Machine Learning Yearning》是吴恩达历时两年,根据自己多年实践经验整理出来的一本机器学习、深度学习实践经验宝典。作为一本 AI 实战圣经,本书主要教你如何在实践中使机器学习算法的实战经验。 Github: https://github.com/deeplearning-ai/machine-learning-yearning-cnlinks.jianshu.com/go?to=https%3A%2F%...
GitHub资源:https://github.com/josephmisiti/awesome-machine-learning 3、scikit-learn/scikit-learn Introduction scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license. GitHub资源:https://github.com/scikit-learn/scikit-learn ...
可以在 JupyterLab (github.com/codespaces) 的“你的 codespace”页或使用 GitHub CLI 打开 codespace。 有关详细信息,请参阅“打开现有 codespace”。 JupyterLab 应用程序必须安装在要打开的 Codespace 中。 默认开发容器映像包括 JupyterLab,因此从默认映像创建的 codespaces 将始...