LYTACs induce selective degradation of extracellular proteins by recruiting them to cellular receptors that mediate delivery to the lysosome. Recent development of GalNAc-LYTACs and MoDE-As targeting the liver-specific ASGPR enables cell-type-restricted lysosomal protein degradation and reveals new LYTAC ...
Protein-degradation platforms such as proteolysis-targeting chimaeras (PROTACs)1,2 and others (for example, dTAGs3, Trim-Away4, chaperone-mediated autophagy targeting5 and SNIPERs6) have been developed for proteins that are typically difficult to target; however, these methods involve the ...
The first lysosome targeting chimeras (LYTACs) targeted extracellular and membrane proteins for degradation by bridging a target protein to an endogenous lysosome targeting receptor, the cation-independent mannose-6-phosphate receptor (CI-M6PR). Here we developed LYTACs that engage the asialo...
The lysosome-targeting chimera (LYTAC) approach has shown promise for the targeted degradation of secreted and membrane proteins via lysosomes. However, there have been challenges in design, development, and targeting. Here, we have designed a genetically engineered transferrin receptor (TfR)-mediated ...
ArticleAnti-tumor immunotherapy using engineeredbacterial outer membrane vesicles fused tolysosome-targeting chimeras mediated bytransferrin receptorGraphical abstractHighlightsd A gene-encoded TfR-LYTAC is developed for lysosomaldegradation of extracellular proteinsd TfR-LYTAC is eff i ciently targetedto thetum...
Several genetic vaccines encoding antigen chimeras containing the lysosome-associated membrane protein (LAMP) translocon, transmembrane, and cytoplasmic domain sequences have elicited strong mouse antigen-specific immune responses. The increased immune response is attributed to trafficking of the antigen ...
West Nile premembrane-envelope genetic vaccine encoded as a chimera containing the transmembrane and cytoplasmic domains of a lysosome-associated membrane protein: increased cellular concentration of the transgene product, targeting to the MHC II compartment, and enhanced neutralizing antibody response...
LYTACs induce selective degradation of extracellular proteins by recruiting them to cellular receptors that mediate delivery to the lysosome. Recent development of GalNAc-LYTACs and MoDE-As targeting the liver-specific ASGPR enables cell-type-restricted lysosomal protein degradation and reveals new LYTAC de...