luajit的ffi是一个常被大家忽略的功能,或者只被当做一个更好用的c导出库,但事实上这是一个超级性能利器。 比如要实现unity中的Vector3,分别用lua table和用ffi实现,我们测试下来,内存占用是10:1,运算x+y+z的耗时也是大概8:1,优化效率惊人。 代码如下: local ffi = require(“ffi”) ffi.cdef[[ typedef ...
local ffi_lib = ffi.load('./ffi_lib.so') ffi.cdef[[ typedef unsigned int mode_t; int mkdir(const char *pathname, mode_t mode); int kill(int pid, int sig); ]] print(ffi.typeof(ffi.C.mkdir)) -- ctype<int ()> print(ffi.typeof(ffi_lib.mkdir)) -- ctype<int ()> print(f...
同时绝大部分 FFI 调用的函数里面都不会 yield。 (你当然可以用 FFI 来调用,会 yield 某个lua_State的 C 函数,不过这并不违反“绝大部分”这一前提) 在以上两点的保证下,我们可以设置一个全局的 buffer,凡是需要临时 buffer 的 FFI 调用都可以从这个全局的 buffer 里面申请空间。 这里是 lua-resty-core 里...
而ffi可以做到只分配xyz三个float的空间就能表示一个Vector3,自然内存占用要低得多,而且jit会利用ffi的信息,实现访问xyz的时候直接读内存,而不是像hash table那样走一次key hash,性能也高得多。 不幸的是ffi只在有jit模式的时候才能有很好的运行速度,现在做手游基本都要做ios,而ios下由于只能运行解释模式,ffi的性能...
luajit的ffi是一个常被大家忽略的功能,或者只被当做一个更好用的c导出库,但事实上这是一个超级性能利器。 比如要实现unity中的Vector3,分别用lua table和用ffi实现,我们测试下来,内存占用是10:1,运算x+y+z的耗时也是大概8:1,优化效率惊人。 代码如下: ...
luajit的ffi是一个常被大家忽略的功能,或者只被当做一个更好用的c导出库,但事实上这是一个超级性能利器。 比如要实现unity中的Vector3,分别用lua table和用ffi实现,我们测试下来,内存占用是10:1,运算x+y+z的耗时也是大概8:1,优化效率惊人。 代码如下: ...
并提供了 FFI 等功能,解决了 Lua 效率低和代码暴露的问题,让 Lua 真正成为了高灵活性、高性能和超...
我们进行过简单的测试,利用ffi的交互效率可以有数倍甚至10倍级别的提升(当然具体要视乎参数列表而定),真可谓飞翔的速度。而借助ffi也是可以提高LuaJIT与C#交互的性能。原理是利用ffi调用自己定义的C函数,再从C函数调用C#,从而优化掉LuaJIT到c这一层的性能消耗,而主要留下C到C#的交互消耗。在上一篇中我们提到的300...
luajit的ffi是一个常被大家忽略的功能,或者只被当做一个更好用的c导出库,但事实上这是一个超级性能利器。 比如要实现unity中的Vector3,分别用lua table和用ffi实现,我们测试下来,内存占用是10:1,运算x+y+z的耗时也是大概8:1,优化效率惊人。 代码如下: ...
不幸的是ffi只在有jit模式的时候才能有很好的运行速度,现在做手游基本都要做ios,而ios下由于只能运行解释模式,ffi的性能很差(比纯table反而更慢),仅仅内存优势得到保留,所以如果要考虑ios这样的平台,这个优化点基本可以忽略,或者只在安卓下针对少数核心代码进行优化。