最近看了一些大佬的DDPG的实现(其实都是基于莫凡大佬的那个版本),结合我自己的毕设问题,发现只是用普通的全连接网络好像不太稳定,表现也不好,于是尝试了一下试着用一直对序列数据有强大处理能力的lstm来试试(虽然这个已经有人做过了),自己手动实现了一下基于lstm的ddpg,希望各位大佬指导指导。 代码语言:javascript ...
摘要:针对现有基于深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法的再入制导方法计算精度较差, 对强扰动条件适应性不足等问题, 在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG, LSTM-D...
STM和非对称actor critic网络的改进DDPG算法。该算法在actor critic网络结构中引入LSTM结构,通过记忆推理来学习部分可观测马尔可夫状态中的隐藏状态,同时在actor网络只使用RGB图像作为部分可观测输入的情况下,critic网络利用仿真环 境的完全状态进行训练构成非对称网络,...
针对传统避障方法难以应用于复杂多障碍的不确定环境问题,提出基于长短时记忆神经网络(LSTM)和深度确定性策略梯度算法(DDPG)的UAV反应式避障方法.首先,采用基于速度障碍法的DDPG避障方法给出了UAV在动态环境中的避障策略;其次,引入LSTM神经网络对DDPG避障方法进行改进,解决了该方法无法表示不同数量障碍状态信息的问题;最后...
25 年后,DeepMind 提出了该方法的一种变体「确定性策略梯度算法」(Deterministic Policy Gradient algorithm,DPG)[DPG][DDPG]。 15. 用网络调整网络 / 合成梯度(1990) 1990 年,我提出了各种学着调整其它神经网络的神经网络 [NAN1]。在这里,我将重点讨论 「循环神经网络中的局部监督学习方法」(An Approach to Lo...
本发明公开了基于LSTM‑DDPG的移动边缘计算任务卸载方法及装置,建立包括边缘网络区域、区域对应的用户和计算任务的网络模型;基于用户本地计算执行任务的时延和能耗,及用户向边缘网络区域传输任务和边缘网络区域计算任务的时延和能耗,得到本地及边缘网络区域的计算成本;根据用户的移动性,计算用户将任务卸载到边缘网络区域计...
25 年后,DeepMind 提出了该方法的一种变体「确定性策略梯度算法」(Deterministic Policy Gradient algorithm,DPG)[DPG][DDPG]。 15. 用网络调整网络/合成梯度(1990) 1990 年,我提出了各种学着调整其它神经网络的神经网络 [NAN1]。在这里,我将重点讨论 「循环神经网络中的局部监督学习方法」(An Approach to Local...
25 年后,DeepMind 提出了该方法的一种变体「确定性策略梯度算法」(Deterministic Policy Gradient algorithm,DPG)[DPG][DDPG]。 15. 用网络调整网络/合成梯度(1990) 1990 年,我提出了各种学着调整其它神经网络的神经网络 [NAN1]。在这里,我将重点讨论 「循环神经网络中的局部监督学习方法」(An Approach to Local...
摘要 本发明涉及一种基于LSTM‑DDPG的部分任务卸载及资源分配算法,包括:创建一个进行部分任务卸载和资源分配的车联网MEC网络模型;将部分任务卸载以及资源分配问题转化为强化学习模型;将LSTM神经网络引入到DDPG算法的演员网络及评论家网络中。与现有的基于DRL的算法相比,本发明的基于LSTM‑DDPG的移动边缘计算算法来解决任...
25 年后,DeepMind 提出了该方法的一种变体「确定性策略梯度算法」(Deterministic Policy Gradient algorithm,DPG)[DPG][DDPG]。 15. 用网络调整网络/合成梯度(1990) 1990 年,我提出了各种学着调整其它神经网络的神经网络 [NAN1]。在这里,我将重点讨论 「循环神经网络中的局部监督学习方法」(An Approach to Local...