最近看了一些大佬的DDPG的实现(其实都是基于莫凡大佬的那个版本),结合我自己的毕设问题,发现只是用普通的全连接网络好像不太稳定,表现也不好,于是尝试了一下试着用一直对序列数据有强大处理能力的lstm来试试(虽然这个已经有人做过了),自己手动实现了一下基于lstm的ddpg,希望各位大佬指导指导。 代码语言:javascript ...
摘要:针对现有基于深度确定性策略梯度(deep deterministic policy gradient, DDPG)算法的再入制导方法计算精度较差, 对强扰动条件适应性不足等问题, 在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG, LSTM-D...
A reentry guidance method based on long short term memory-deep deterministic policy gradient (LSTM-DDPG) is proposed on the basis of the training framework of the DDPG algorithm to address the problems of poor computational accuracy and insufficient adaptability to strong disturbance conditions ...
STM和非对称actor critic网络的改进DDPG算法。该算法在actor critic网络结构中引入LSTM结构,通过记忆推理来学习部分可观测马尔可夫状态中的隐藏状态,同时在actor网络只使用RGB图像作为部分可观测输入的情况下,critic网络利用仿真环 境的完全状态进行训练构成非对称网络,...
研究者们提出了基于DRL和模仿学习的代理驱动模型,处理金融数据的噪声。一项研究结合了级联LSTM网络与DRL,使用PPO和LSTM网络进行策略学习。近期工作结合了DQN和DDPG与CNN和GRU架构,并引入注意力机制以克服RNN的局限。 本文新引入的扩展LSTM(xLSTM)架构在自动化股票交易中的应用尚待探索。xLSTM克服了LSTM的梯度消失问题,...
25 年后,DeepMind 提出了该方法的一种变体「确定性策略梯度算法」(Deterministic Policy Gradient algorithm,DPG)[DPG][DDPG]。 15. 用网络调整网络/合成梯度(1990) 1990 年,我提出了各种学着调整其它神经网络的神经网络 [NAN1]。在这里,我将重点讨论 「循环神经网络中的局部监督学习方法」(An Approach to Local...
25 年后,DeepMind 提出了该方法的一种变体「确定性策略梯度算法」(Deterministic Policy Gradient algorithm,DPG)[DPG][DDPG]。 15. 用网络调整网络 / 合成梯度(1990) 1990 年,我提出了各种学着调整其它神经网络的神经网络 [NAN1]。在这里,我将重点讨论 「循环神经网络中的局部监督学习方法」(An Approach to Lo...
本发明公开了基于LSTM‑DDPG的移动边缘计算任务卸载方法及装置,建立包括边缘网络区域、区域对应的用户和计算任务的网络模型;基于用户本地计算执行任务的时延和能耗,及用户向边缘网络区域传输任务和边缘网络区域计算任务的时延和能耗,得到本地及边缘网络区域的计算成本;根据用户的移动性,计算用户将任务卸载到边缘网络区域计...
In particular, long short-term memory (LSTM) is incorporated into a deep deterministic policy gradient (DDPG) framework to tackle real-world microgrid power management problems. This method uses DDPG for power allocation decisions, while LSTM is applied to extract environmental state variables from ...
25 年后,DeepMind 提出了该方法的一种变体「确定性策略梯度算法」(Deterministic Policy Gradient algorithm,DPG)[DPG][DDPG]。 15. 用网络调整网络/合成梯度(1990) 1990 年,我提出了各种学着调整其它神经网络的神经网络 [NAN1]。在这里,我将重点讨论 「循环神经网络中的局部监督学习方法」(An Approach to Local...