单站点多变量单步预测问题---基于Bi-LSTM+Attention实现多变量时间序列预测股票价格。 二、实现过程 2.1 读取数据集 df=pd.read_csv("data.csv", parse_dates=["Date"], index_col=[0]) print(df.shape) print(df.head()) fea_num = len(df.columns) df: 2.2 划分数据集 # 拆分数据集为训练集和测...
一、递归预测原理 二、CNN-LSTM-Attention原理 数据输入格式 结果展示 部分代码展示 完整代码 以往的时间序列预测都是划分训练集测试集进行评估精度的,缺少对未来数据的预测(虽然论文里大多也都是这么做的)。后台有很多小伙伴在应用过程中实际需要利用模型在评估精度后输出预测未来的数据。因此,今天给大家带来一期基于CNN...
在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。 CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相...
这可能是我见过最全的时间序列预测实战教程!CNN-LSTM-Attention神经网络时间序列预测代码解读、LSTM股票预测、Time-LLM、Informer共计23条视频,包括:Time-LLM:基于大语言模型的时间序列预测、CNN-LSTM-Attention神经网络时间序列预测代码讲解~1、Informer时间序列预测等
Matlab实现CNN-LSTM-Attention单变量时间序列预测 1.data为数据集,格式为excel,单变量时间序列预测,输入为一维时间序列数据集; 2.CNN_LSTM_AttentionTS.m为主程序文件,运行即可; 3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
时间序列预测是许多领域中的核心问题,如金融市场分析、气候预测、交通流量预测等。近年来,深度学习在时间序列分析上取得了显著的成果,尤其是卷积神经网络(CNN)、长短时记忆网络(LSTM)和注意力机制(Attention)的结合使用。 3.1卷积神经网络(CNN)在时间序列中的应用 ...
Time-LLM:LLM跨模态对齐应用实战(结合时序预测) 01:13:58 CNN-LSTM-Attention神经网络时间序列预测代码讲解 36:53 Informer时间序列预测(上) 01:00:07 Informer时间序列预测(下) 01:04:31 Informer时间序列预测源码解读 03:04:02 【LSTM】1-时间序列模型 09:24 2-网络结构与参数定义 07:53 3-构...
完整程序私信博主回复Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测。 %% 清空环境变量 warning off % 关闭报警信息 close all % 关闭开启的图窗 clear % 清空变量 clc % 清空命令行 %% 划分训练集和测试集 P_train = res(1: num_train_s, 1: f_)'; ...
注意力机制又有很多子类型,比较常用的是自注意力(Self-Attention)机制和多头注意力(Multi-head Attention)机制。 接下来,我们将在上一篇实现的CNN+LSTM模型基础上依次加入自注意力和多头注意力机制,对沪深300指数的每日收益率进行预测,将所有数据按7:2:1的比例划分为训练集、验证集、测试集三部分,并使用前文提到的...
随后,我们建立了LSTM模型,该模型整合了LSTM和Attention机制,以提升对多变量时间序列的预测能力。通过模型的训练,预测结果得以生成。预测效果展示环节,我们将展示训练集与测试集的预测值与实际值对比,直观地评估模型的预测准确度。最后,我们评估了模型的预测效果,通过一系列指标(如均方误差、均方根误差...