本文基于CNN+LSTM+Attention实现单变量时间序列预测。 二、实现过程 2.1 读取数据集 # 读取数据集 data = pd.read_csv('data.csv') # 将日期列转换为日期时间类型 data['Month'] = pd.to_datetime(data['Month']) # 将日期列设置为索引 data.set_index('Month', inplace=True) data: 2.2 划分数据集...
一、递归预测原理 二、CNN-LSTM-Attention原理 数据输入格式 结果展示 部分代码展示 完整代码 以往的时间序列预测都是划分训练集测试集进行评估精度的,缺少对未来数据的预测(虽然论文里大多也都是这么做的)。后台有很多小伙伴在应用过程中实际需要利用模型在评估精度后输出预测未来的数据。因此,今天给大家带来一期基于CNN...
注意力可以提高 LSTM中重要时间步的作用,从而进一步降低模型预测误 差。注意力本质上就是求最后一层 LSTM 输出向量的加权平均和。 LSTM 隐藏层输出向量作为注意力层的输入,通过一个全连接层进行训练,再对全连接层的输出使用 softmax 函数进行归一化,得出每一个隐藏层向量的分配权重,权重大小表示每个时间步的隐状态...
Matlab实现CNN-LSTM-Attention单变量时间序列预测 1.data为数据集,格式为excel,单变量时间序列预测,输入为一维时间序列数据集; 2.CNN_LSTM_AttentionTS.m为主程序文件,运行即可; 3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容; 注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。
CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下: ...
时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、长短时记忆网络(Long Short-Term Memory, LSTM)以及注意力机制(Attention Mechanism)在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。鲸鱼...
注意力机制又有很多子类型,比较常用的是自注意力(Self-Attention)机制和多头注意力(Multi-head Attention)机制。 接下来,我们将在上一篇实现的CNN+LSTM模型基础上依次加入自注意力和多头注意力机制,对沪深300指数的每日收益率进行预测,将所有数据按7:2:1的比例划分为训练集、验证集、测试集三部分,并使用前文提到的...
本文提出了一种基于卷积神经网络结合注意力机制的长短记忆网络CNN-LSTM-Attention实现风电功率多输入单输出回归预测算法。该算法结合了卷积神经网络、长短记忆网络和注意力机制,能够有效地提取输入特征和建立时序关系,并对输入特征进行加权处理,从而提高预测精度。
CNN-LSTM-Attention:神经网络时间序列预测代码精讲+项目实战,从 源码资料+60GAI精选资料包
时间序列预测是许多领域中的核心问题,如金融市场分析、气候预测、交通流量预测等。近年来,深度学习在时间序列分析上取得了显著的成果,尤其是卷积神经网络(CNN)、长短时记忆网络(LSTM)和注意力机制(Attention)的结合使用。 3.1卷积神经网络(CNN)在时间序列中的应用 ...