log4cplus::SharedAppenderPtr pFileAppender(new log4cplus::FileAppender("log1.txt", std::ios_base::app, true, false)); log4cplus::SharedAppenderPtr pRollingFileAppender(new log4cplus::RollingFileAppender("rollog", 15, 3, true, false)); pAppender->setName("ConsoleAppender"); pFile...
// logbase.cpp#include<math.h>#include<stdio.h>doublelogbase(doublea,doublebase){returnlog(a) /log(base); }intmain(){doublex =65536;doubleresult; result = logbase(x,2);printf("Log base 2 of %lf is %lf\n", x, result); } ...
使用:mylog(DEBUG, "This is debug info\n");结果:[2018-07-22 23:37:27:172] [DEBUG] [main.cpp:5] This is debug info默认打印当前时间(精确到毫秒)、文件名称、行号。*/#include <stdarg.h>#include <stdio.h>#include <string.h>#include <time.h>#include <unistd.h>#include <sys/time.h...
返回0,文件不存在 static int file_exists(char *filename) { return (access(filename, 0) == 0); } static int read_filelist(char *basePath) { DIR *dir; struct dirent *ptr; char base[1000]; int count = 0; if ((dir=opendir(basePath)) == NULL) { fprintf(stderr,"Open dir error...
// logbase.cpp #include <math.h> #include <stdio.h> double logbase(double a, double base) { return log(a) / log(base); } int main() { double x = 65536; double result; result = logbase(x, 2); printf("Log base 2 of %lf is %lf\n", x, result); } ...
only allow files count=%d\n",LOGFILE_MAXCOUNT); return -2; } } else if(ptr->d_type == 10) ///link file printf("l_name:%s/%s\n",basePath,ptr->d_name); else if(ptr->d_type == 4) ///dir { printf("d_name:%s/%s\n",basePath,ptr->d_name); printf("this is a dir\...
把.h和.cpp文件下载下来,放到\log4cplus\log4cplus-REL_2_0_4\threadpool 目录里。 Catch-master 下载:Catch-master.zip 解压后,把文件夹中的内容复制到 log4cplus-REL_2_0_4\catch中。 新版本的不用这些操作,新版源码里已经包含了。 方式二、vcpkg环境 ...
// logbase.cpp#include<math.h>#include<stdio.h>doublelogbase(doublea,doublebase){returnlog(a) /log(base); }intmain(){doublex =65536;doubleresult; result = logbase(x,2);printf("Log base 2 of %lf is %lf\n", x, result); } ...
Installation . MessageId=0x2 Severity=Success SymbolicName=QUERY_CATEGORY Language=English Database Query . MessageId=0x3 Severity=Success SymbolicNameREFRESH_CATEGORY Language=English Data Refresh . ; // - Event messages - ; // *** Message = 1000 Severity = Success Facility = Application ...
现在由如下的重要定理,对x\in(1/2,1)且n\geqslant3有\left|\log x-\frac{\pi}{2}\left[\frac{1}{\textrm{AGM}(1,10^{-n})}-\frac{1}{\textrm{AGM}(1,10^{-n}x)} \right]\right|\leqslant\frac{n}{10^{2(n-1)}} 且此式子对于x为复数也成立(当然1/2<|x|<1)。所以,指定...