ln(x √1 x^2)等价无穷小 x趋于0时ln[x+√(1+x^2)]等价无穷小ln[x+√1+x^2)]=ln[1+x+√(1+x^2)-1]~x+√(1+x^2)-1~x. (x趋于0)其中√(1+x^2)-1~1/2(x)^2. 为什么x+1/2(x)^2~x 答案:因为x→0时,x+1/2x²=x+o(x),根据是,若某一过程有等价无穷小α~β,则...
要找出 ln(x+√(1+x^2)) 的等价无穷小,我们可以使用泰勒级数展开来逼近 ln 函数。首先,我们将 √(1+x^2) 展开为泰勒级数,然后将其代入 ln 函数中进行简化。√(1+x^2) 的泰勒级数展开为:√(1+x^2) = 1 + (1/2)x^2 - (1/8)x^4 + (1/16)x^6 - ...接下来,将该展...
是x,如下:当x→0时,等价无穷小:(1)sinx~x (2)tanx~x (3)arcsinx~x (4)arctanx~x (5)1-cosx~1/2x^2 (6)a^x-1~xlna (7)e^x-1~x (8)ln(1+x)~x (9)(1+Bx)^a-1~aBx (10)[(1+x)^1/n]-1~1/nx (11)loga(1+x)~x/lna ...