lim(x-ln(1+x))/x² =lim(1-1/(1+x))/2x =lim1/2(1+x) =1/2 ∴x-ln(1+x)~x²/2 等价无穷小: 1、e^x-1~x (x→0) 2、 e^(x^2)-1~x^2 (x→0) 3、1-cosx~1/2x^2 (x→0) 4、1-cos(x^2)~1/2x^4 (x→0) 5、sinx~x (x→0) 6、tanx~x (x→0) ...
ln(1+x)/x的极限等于1 极限的存在准则有夹逼原则和单调有界原则,这个知识课本上有,可以推出两个基本极限。 即x趋向于无穷,lim(1+n分之1)的n次方等于e 这个可以再推算出,当x趋向于0,lim(1+x)的x分之1次方等于e lim1/x*ln(1+x),利用对数的运算性质lna的b次方=blna,就可以推出原式等于limln(1+x...
解答一 举报 把ln(1+x)用麦克劳林公式展开:ln(1+x)=x-(x^2)/2+(x^3)/3-……所以ln(1+x)-x=-(x^2)/2+(x^3)/3-……所以它的等价无穷小=-(x^2)/2 解析看不懂?免费查看同类题视频解析查看解答 更多答案(1) 相似问题 证明当x→0时无穷小量ln√(1+x/1-x)与x是等价无穷小 当x→...
ln(1+x)~x是等价无穷小,不是等价无穷大 北冥哪有鱼 偏导数 8 小肉包啊啊啊 实数 1 🐶要趋向于0,你这是∞ 天野音音 小吧主 16 果果🥑 实数 1 是等价无穷小不是等价无穷大 猴王中王 数项级数 6 楼上正解 涛声依旧 实数 1 令t=1/x,该等价无穷小就等价无穷小了 叫我第一名...
解答一 举报 x趋近于0的时候 ln(1+x)~x 因为x趋近于0时,lim(ln(1+x)/x)=1 即ln(1+x)~x 为等价无穷小量. 令一种解释,ln(1+x)的泰勒展开式的第一项为x,后面都是x的高阶无穷小量,所以ln(1+x)~x 解析看不懂?免费查看同类题视频解析查看解答 ...
【解析】解由于 [ln(1+x)]'=1/(1+x) 而函数1/(1+x) 的幂级数展开式为1/(1+x)=1-x+x^2+⋯+(-1)^nx^n+⋯(-1) ,对上式两端从0到x积分,得ln(1+x)=∫_0^x1/(1+x)dx=∫_0^xdx-∫_0^xxdx+∫_0^xx^2dx+⋯+(-1)^(n =x-(x^2)/2+(x^3)/3+⋯+(-1)^n(x^...
【解析】令f(x)=x-ln(x+1)由对数函数有意义的条件, x+10∴x-1 .当 x≤-1 时,ln(x+1)无意义,无法比较大小当 x-1 时, f'(x)=1-1/(x+1)=x/(x+1)∴∴当 -1x0 时, f'(x)0 ,f(x)单调递减当 x0 时, f'(x)0 ,f(x)单调递增∵f(0)=0-0=0∴f(x) 在 (-1,+∞) 上...
【图像】y=x、y=ln(1+x) 朗朗00 2022年08月31日 14:34 收录于文集 【数】 知识点集锦 · 39篇 分享至 投诉或建议 评论1 赞与转发
问一个拉格朗日中值定..问一个拉格朗日中值定理的证明,ln(1+x)=x/(1+ξ)图中画红线等式是怎么来的啊
利用两个重要极限中的公式:limx→∞(1+1x)x=e将其进行变量替换,可以化为更一般的形式:limα(x)→0(1+α(x))1α(x)=e∵ln(1+x)x=1+ln(1+x)−xx,且有limx→0ln(1+x)−xx=0∴limx→0[ln(1+x)x]1ex−1=limx→0[1...本...