ln等价无穷小替换是-/2。把ln用麦克劳林公式展开:ln=x-/2+/3-所以ln-x=-/2+/3-所以它的等价无穷小=-/2。等价无穷小是现代词,是一个专有名词,指的是数学术语,是大学高等数学微积分使用最多的等价替换。无穷小就是以数零为极限的变量。确切地说,当自变量x无限接近某个值x0时,函数值f...
1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向过...
ln(1+x)等价无穷小替换是-(x^2)/2。把ln(1+x)用麦克劳林公式展开:ln(1+x)=x-(x^2)/2+(x^3)/3-……所以ln(1+x)-x=-(x^2)/2+(x^3)/3-……所以它的等价无穷小=-(x^2)/2。换底公式设b=a^m,a=c^n,则b=(c^n)^m=c^(mn) ①对①取以a为底的对数,有:log(a)(b)=m...
结果一 题目 为什么ln(1+x)和x是等价无穷小啊,怎么证明出来的详细说明或给出证明过程啊. 答案 limln(1+x)/x (x趋于0)=lim1/1+x (运用洛必达法则)=1所以 ln(1+x)和x是等价无穷小相关推荐 1为什么ln(1+x)和x是等价无穷小啊,怎么证明出来的详细说明或给出证明过程啊....
ln(1+x)等价无穷小替换是x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。等价无穷小的使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时,可以用等价无穷小代换,...
既然证明二者为等价无穷小 那么就是x趋于0的时候 二者比值的极限值趋于1 lim(x趋于0) ln(1+x) /x 使用洛必达法则得到 原极限=lim(x趋于0) 1/(1+x)代入x=0,极限值当然等于1 所以ln(1+x) 和x是等价无穷小
x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。等价无穷小的使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时,可以用等价无穷小代换,但是作为加减的...
∵lim(x-->0)[ln(1+x)]/x=lim(x-->0)1/(1+x) 【罗比达法则】=1∴x-->0时,ln(1+x)与为等价x无穷小量. 结果二 题目 怎么证明ln(1+x)与x为等价无穷小量? 答案 ∵lim(x-->0)[ln(1+x)]/x=lim(x-->0)1/(1+x) 【罗比达法则】=1∴x-->0时,ln(1+x)与为等价x无穷小量. 结...
ln(1+x)等价于x。当f(x)/g(x)=1(x趋向于x0)时称f(x)与g(x)等价无穷小,因为x趋向于0时ln(1+x)/x=1,因此这两个就是一对常用的等价无穷小量。证明过程简单说一下:将1/x放到ln里面,此时ln里面是(1+x)^(1/x),当x趋于0时这个极限为e(两个重要极限之一),因此整体上...
=ln[lim(x→0) (1+x)^(1/x)]由两个重要极限知:lim(x→0) (1+x)^(1/x)=e;所以原式=lne=1,所以ln(1+x)和x是等价无穷小 无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。因此常量也是可以当做变量来研究的。这么说来——0是可以作为无穷小的...