-x,sin(-x),tan(-x)因为ln(1+x)的等价无穷小是x;sinx;tanx;e^x-1;又ln(1-x)=ln[1+(-x)]。
对-1 < x 1 ,当x→0时.结果一 题目 x→0时,ln(1+x)是x的---阶无穷小量. 答案 级数展开 ln(1+x) = x - x 2/2 + x 3/3 - x 4/4 + x 5/5 - x 6/6 . 对 -1 < x 1 , 当x→0时.相关推荐 1x→0时,ln(1+x)是x的---阶无穷小量.反馈 收藏...
x-ln(1+x)等价于1/2x^2。 lim(x-ln(1+x))/x² =lim(1-1/(1+x))/2x =lim1/2(1+x) =1/2 ∴x-ln(1+x)~x²/2 等价无穷小: 1、e^x-1~x (x→0) 2、 e^(x^2)-1~x^2 (x→0) 3、1-cosx~1/2x^2 (x→0) 4、1-cos(x^2)~1/2x^4 (x→0) 5、sinx~x (...
∫ln(1+x)dx=x*ln(1+x)-∫xd(ln(1+x))=x*ln(1+x)-∫[x/(1+x)]dx=x*ln(1+x)-∫[(1+x)-1]/(1+x)dx=x*ln(1+x)-∫[1-(1/1+x)]dx=x*ln(1+x)-x+ln(1+x)+C=(x+1)*ln(1+x)-x+C 扩展资料: 函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)...
解答一 举报 x趋近于0的时候 ln(1+x)~x 因为x趋近于0时,lim(ln(1+x)/x)=1 即ln(1+x)~x 为等价无穷小量. 令一种解释,ln(1+x)的泰勒展开式的第一项为x,后面都是x的高阶无穷小量,所以ln(1+x)~x 解析看不懂?免费查看同类题视频解析查看解答 ...
1+x)/x写成ln[(1+x)^(1/x)]的形式,以便应用极限运算。4. 根据一个重要的极限定理,lim(x->0) (1+x)^(1/x)等于自然对数的底e。5. 因此,lim(x->0) ln(1+x)/x等于lim(x->0) ln(e),结果为1。6. 这表明ln(1+x)和x是等价无穷小,即它们在x趋近于0时的行为相同。
ln(1+x)的导数是多少 答案 分析:先把ln(1+x)看成ln(u) 对ln(u)求导为 1/u 再对(1+x)求导为 (1+x)'=1 1的导数为"0" x的导数为"1" 也就是 1'=0, x'=1*x^(1-1)=0 {公式:[(x^n)]'=n*x^n-1} 而常数的导数为零 则u=(1+x) 所以原式为ln(1+x)=1/(1+x)*(1+x)'...
ln(1+x)的图像如下图:y=ln(1+x)是由y=lnx的函数图像向左边平移一个单位得到的。即y=lnx向左平移1单位,x变成x+1,其他地方不变。 根据这个定义立刻可以知道并且根据可导必连续的性质,lnx在(0,+∞)上处处连续、可导。其导数为1/x>0,所以在(0,+∞)单调增加。
如图所示 ln1