其实当x相等时,函数ln(x+1)是大于lnx的,但是做函数y=ln(x+1)-lnx,当x越来越大的时候,y是趋向于0的,所以x无限大的时候,ln(x+1)差不多与lnx相等,由于y轴上,的刻度也是比较大的,所以你观察的时候就是重合的了。将y的刻度缩小,就可以看到其实ln(x+1)大于lnx了。希望对...
x→0时,ln(1+1/x)等价于x。x→∞时,ln(1+1/x)等价于lnx。x→∞时,ln(1+1/x)是关于 x 的低阶无穷大。相关介绍:自然对数以常数e为底数的对数,记作lnN(N>0)。在物理学,生物学等自然科学中有重要的意义。一般表示方法为lnx。数学中也常见以logx表示自然对数。若为了避免与基为10的...
ln(1+x) =x-x²/2+x³/3+……+(-1)^(n-1) * x^n/n+...x=0 LS=ln1=0 RS = 0 这里的n是从0开始的正整数,与x应该无关,题中写的只是当x取0时的ln(1+x)的结果。在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已...
即ln(1/x)=-lnx ln(1/x)=ln(x^(-1))在对数中,指数可以降到对数符号前面,所以:ln(1/x)=ln(x^(-1))=-1*lnx=-lnx -ln(1/x)=-lnx^(-1)=lnx x的指数可以直接提到最前面
x趋于0,ln(1+x)与x是等价无穷小 这是因为:令 g(x) = ln(1+x),g(0) = 0;[ln(1+x)] ' = 1 / (1+x),g'(0) = 1;[ln(1+x)] '' = -1 / (1+x)^2,g''(0) = -1;[ln(1+x)] ''' = 2 /...
1+x)/x写成ln[(1+x)^(1/x)]的形式,以便应用极限运算。4. 根据一个重要的极限定理,lim(x->0) (1+x)^(1/x)等于自然对数的底e。5. 因此,lim(x->0) ln(1+x)/x等于lim(x->0) ln(e),结果为1。6. 这表明ln(1+x)和x是等价无穷小,即它们在x趋近于0时的行为相同。
1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向...
1. 函数f(x) = x - ln(1+x) 满足 f(x) ≥ f(0) = 0。2. 由此可得 x - ln(1+x) ≥ 0。3. 进一步推导得到 x ≥ ln(1+x)。4. 定义函数 f(x) = ln(1+x) - x,求导得 f'(x) = 1/(1+x) - 1。5. 当 0 ≤ x ≤ 1 时,f'(x) ≤ 0,说明函数 f(x) ...
\ln x 在 x=t 处泰勒展开得 \ln x=\ln t+(\frac{x}{t}-1)-\frac{1}{2}(\frac{x}{t}-1)^2+\frac{1}{3}(\frac{x}{t}-1)^3-... \ln x 在 x=e 处泰勒展开得 \ln x=\frac{x}{e}-\frac{1}{2}(\frac{x}{e}-1)^2+\frac{1}…
x→0时,ln(1+x)等价于x。x→∞时,ln(1+x)等价于lnx。x→∞时,ln(1+x)是关于 x 的低阶无穷大。