LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等]由于LLM参数量都是在亿级以上,少则数十亿,多则数千亿。当我们想在用特定领域的数据微调模型时,如果想要f…
为此,我们提出了一种新颖的方法P-Tuning,该方法在离散提示的基础上结合了可训练的连续提示嵌入。实验表明,P-Tuning不仅通过最小化不同离散提示之间的差距来稳定训练过程,而且在一系列NLU任务(包括LAMA和SuperGLUE)上显著提高了性能。P-Tuning在完全监督和少量样本设置下,对冻结和微调的语言模型均普遍有效。 (2) 思路...
然后再对模型进行 finetuning 来更好满足自己的下游任务。那么对于如果要训练一个专家模型。预训练也是必不可缺的工作。不管是预训练还是 finetuning(微调),无论选用何种方案,都避免不了训练中产生的灾难性遗忘问题,那么怎么减少和避免这种情况的发生,也是本文想讲的一个重点。对于推理,在GPU资源不富裕的情况,如何最...
为此,我们提出了一种新颖的方法P-Tuning,该方法在离散提示的基础上结合了可训练的连续提示嵌入。实验表明,P-Tuning不仅通过最小化不同离散提示之间的差距来稳定训练过程,而且在一系列NLU任务(包括LAMA和SuperGLUE)上显著提高了性能。P-Tuning在完全监督和少量样本设置下,对冻结和微调的语言模型均普遍有效。 (2) 思路...
没有Lora之前,LLM在下游应用(fine tuning)的时候,需要全量更新base 模型的权重,但是一般base 模型都非常大,导致 fine tuning特别耗费资源。Lora 用于通过少量资源进行 LLM fine-tuning。 LoRA 的最大优势是速度更快,使用的内存更少;因此,可以在消费级硬件上运行。 2.2 一句话总结 LoRA:固定transformer结构中原本的模...
LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等] 由于LLM参数量都是在亿级以上,少则数十亿,多则数千亿。当我们想在用特定领域的数据微调模型时,如果想要full-tuning所有模型参数,看着是不太实际,一来需要相当多的硬件设备(GPU),二来需要相当长的训练时间。因此,我...
LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等] 由于LLM参数量都是在亿级以上,少则数十亿,多则数千亿。当我们想在用特定领域的数据微调模型时,如果想要full-tuning所有模型参数,看着是不太实际,一来需要相当多的硬件设备(GPU),二来需要相当长的训练时间。因此,...
Prefix Tuning 在prefix-tuning之前的工作主要是人工设计离散的template或者自动化搜索离散template,问题在于最终的性能对人工设计的template的特别敏感:加一个词或者少一个词,或者变动位置,都会造成很大的变化,所以这种离散化的token的搜索出来的结果可能并不是最优的。Prefix Tuning方法使用连续的virtual token embedding来...
Prefix-Tuning (P-Tuning v2) Prompt Tuning Lora/QLora 根据实际经验,这里推荐采用 Lora 或 QLora。简单介绍一下 QLoRA ,重点改进是将模型采用4bit量化后加载,训练时把数值反量化到 bf16 后进行训练,利用 LoRA 可以锁定原模型参数不参与训练,只训练少量 LoRA 参数的特性使得训练所需的显存大大减少。例如33B的...
Fine-tuning stage,也就是微调阶段,其主要目的是「提高模型对指令(instruction)的遵循能力」。主要包括Instruction SFT(指令监督微调)、DPO、KTO等技术,本文重点讲解这三类微调技术; Prompting stage,也就是使用模型推理阶段,其主要目的是「让模型按照你的期望输出结果」。这个阶段所使用的模型学习技术主要是ICL(In-Conte...