以下是 LLM finetuning的理论篇,介绍几种常见的LLM finetuning算法。懂理论+会实践,而后才能自己创造 :) 因为LLM的基座模型参数动不动都几十B,LLM finetunging的算法都是围绕着参数优化进行的,即:fine tuning时如何尽可能少的更新权重参数。 注:因为这些论文已经发出来好久了,已经有别人做过paper note,我做的时...
全量微调是美味的,但是若没有太多的计算资源,那么存在两种方法可以在有限的资源下将模型调教得较为服帖。一 种是X-shot Prompt,这点在介绍Dspy的时候说过了。另外一种是高效参数微调(微调部分参数),简称PEFT(Parameter-efficient fine tuning)。本系列还是会将重点放在PEFT的技术上面。2.PEFT概览 最后先来看...
本文介绍使用PEFT( 参数高效微调, Parameter Efficient Fine-Tuning)的LoRA方法,来通过调整模型的一小部分参数来实现模型的fine-tuning。 使用的微调方法为 LoRA(低秩适应, Low Rank Adaptation)在微调过程中通过低秩分解来模拟参数的改变量,保持模型大部分参数的低秩结构,提高效率。大概做法: 做pretrain模型旁边增加一个...
Fine-Tuning技术 本文主要讲解以Llama Factory Alpaca 训练数据格式为主的微调技术 官网直达:https://github.com/hiyouga/LLaMA-Factory/blob/main/data/README_zh.md Instruction Supervised Fine-Tuning 在指令监督微调时,instruction 列对应的内容会与 input 列对应的内容拼接后作为人类指令,即人类指令为 instruction\...
简介:大语言模型(LLM)框架及微调 (Fine Tuning) 大语言模型(LLM)是指由大规模训练语言模型所得的模型。这些模型通常使用深度学习方法,在巨大的文本语料库上进行训练,以学习语言的各种结构、规则和特征。LLM在自然语言处理(NLP)任务中表现出色,如机器翻译、文本生成、问题回答等。
当然这里前 3 名都闭源模型,后面开源模型,大多数也都是英文的模型。如果 GPU 资源充足(至少 A100*8),这里也可以基于开源模型做中文的预训练,最后再 finetuning 。但我们没有 GPU 资源, 我们可以选择开源的中文模型直接做微调。 具体有哪些中文模型可以选择,可以参考这两个地址 中文语言理解测评基准(CLUE)[2] 和...
目前业界的主流解决方案为 LLM 对齐 (alignment),即通过建立对比数据(正样本和负样本)用强化学习的方式来对 LLM 进行微调 (Finetuning),也就是 RLHF (Reinforcement Learning from Human Feedback)[1] ,从而保证 LLM 输出符合人类预期和价值观。但对齐过程往往受到 (1) 数据收集;(2) 计算资源的限制。字节...
Fine-tuning 的主要工作原理如下: 预训练模型初始化: 与RAG 类似,微调也从初始化预训练语言模型开始,该模型之前已在大型多样化数据集上进行过训练。预训练阶段使模型具备对语言模式、语义和上下文的广义理解,这使其成为各种 NLP 任务的宝贵起点。 特定任务数据集: 预训练后,模型将在较小的特定任务数据集上进行微调...
什么是LLM-Finetune? 在构建大语言模型应用程序时,通常采用两种主要方法来融合专有数据和特定领域知识:检索增强生成(RAG)和模型微调(Fine-tuning)。检索增强生成通过在提示中引入外部数据来丰富内容,而模型微调则直接将附加知识融入模型的内部结构中。 当下,各种大模型微调的技术异彩纷呈,比如以参数高效微调(PEFT)为代表...
LLM-04 大模型 15分钟 FineTuning 微调 ChatGLM3-6B(准备环境) 3090 24GB实战 需22GB显存 LoRA微调 P-TuningV2微调