Text-to-SQL 是一项旨在将自然语言问题转换为可以在关系数据库中执行的相应 SQL 查询的任务。形式上,给定一个用户问题 Q(也称为用户查询、自然语言问题等)和数据库模式 S,任务的目标是生成 SQL 查询 Y,从数据库检索所需内容以回答用户问题。文本到 SQL 允许用户使用自然语言与数据库交互,而不需要 SQL 编程的专...
Text-to-SQL任务是将自然语言问题转换成SQL查询,这对自然语言处理和数据库领域都是一项挑战。近年来,大型语言模型(LLMs)成为Text-to-SQL任务的新范式。特别是,GPT-4实现了在Spider排行榜上85.3%的执行准确率。尽管已有研究取得进展,但LLM基础的Text-to-SQL解决方案的提示工程缺乏系统性研究。目前研究集中在问题表示...
Text-to-SQL任务,即将自然语言问题转化为SQL查询语句,是NLP领域的一个重要研究方向。DAIL-SQL作为Text-to-SQL任务的一个基准数据集,对于评估LLM在该任务上的性能具有重要意义。 一、DAIL-SQL数据集简介 DAIL-SQL是一个用于评估Text-to-SQL系统性能的大规模数据集。它包含了大量用户提出的问题和对应的SQL查询语句,...
该研究主要面向真实数据库的 Text-to-SQL 评估,过去流行的测试基准,比如 Spider 和 WikiSQL,仅关注具有少量数据库内容的数据库 schema,导致学术研究与实际应用之间存在鸿沟。BIRD 重点关注海量且真实的数据库内容、自然语言问题与数据库内容之间的外部知识推理以及在处理大型数据库时 SQL 的效率等新三个挑战。首先...
Text-to-SQL任务的目标是将自然语言问题自动转换成SQL查询,这在智能数据库服务、自动数据分析和数据库问答等领域具有重要作用。然而,理解自然语言问题和生成正确SQL查询的难度使得Text-to-SQL任务成为一个挑战。最初的研究集中于用预定义规则、查询枚举或将其视为序列到序列任务来解决Text-to-SQL任务。随...
最近,阿里巴巴联合香港大学等机构推出了面向大规模真实数据库的全新基准 BIRD (Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale Database Grounded Text-to-SQLs), 包含 95 个大规模数据库及高质量的 Tex...
Text to SQL: 简称Text2SQl,是将自然语言文本(Text)转换成结构化查询语言SQL的过程,属于自然语言处理-语义分析(Semantic Parsing)领域中的子任务。 它的目的可以简单概括为:“打破人与结构化数据之间的壁垒”,即普通用户可以通过自然语言描述完成复杂数据库的查询工作,得到想要的结果。
最近,阿里巴巴联合香港大学等机构推出了面向大规模真实数据库的全新基准 BIRD (Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale Database Grounded Text-to-SQLs), 包含 95 个大规模数据库及高质量的 Text-SQL pair,数据存储量高达 33.4 GB。之前最优的模型在 BIRD 上评估仅达到...
广州华微明天申请基于VIEW和LLM的两阶段Text-to-SQL生成方法专利,提高处理效率 金融界2025年1月22日消息,国家知识产权局信息显示,广州华微明天软件技术有限公司申请一项名为“基于VIEW和LLM的两阶段Text-to-SQL生成方法”的专利,公开号 CN 119271696 A,申请日期为2024年12月。专利摘要显示,一种基于VIEW和LLM的...
(2022-arXiv)Deep Learning Driven Natural Languages Text to SQL Query Conversion: A Survey State of the art: 三. 建模方法 任务拆解: 我们可以将Text2SQL任务拆解为2个大的部分,第一是利用LLM对用户的输入进行语义理解,然后结合数据库中表的结构信息,抽取出相关的字段信息。第二是利用抽取的字段信息生成结...