T5 Pre-training & Fine-tuning GLM-130B GLM(General Language Model)是清华提出的基座模型,属于Prefix LM方式。作者说出发点是 希望能同时在3种NLP任务上达到最优 也不想引入原始encoder-decoder成倍的计算量代价 换个角度理解,我认为该论文出发点是改进BERT,想解决BERT的两个短板 短板1:对连续的Mask Token处理...
本文介绍使用PEFT( 参数高效微调, Parameter Efficient Fine-Tuning)的LoRA方法,来通过调整模型的一小部分参数来实现模型的fine-tuning。 使用的微调方法为 LoRA(低秩适应, Low Rank Adaptation)在微调过程中通过低秩分解来模拟参数的改变量,保持模型大部分参数的低秩结构,提高效率。大概做法: 做pretrain模型旁边增加一个...
Prompt-Tuning又可以称为Prompt、Prompting、Prompt-based Fine-tuning等。 1.1 解决问题 降低语义差异(Bridge the gap between Pre-training and Fine-tuning) :预训练任务主要以Masked Language Modeling(MLM)为主,而下游任务则重新引入新的训练参数,因此两个阶段的目标通常有较大差异。因此需要解决如何缩小Pre-trainin...
面对诸多开源本地模型,根据自己的需求,选择适合自己的基座模型和参数量很重要。选择完后需要对训练数据进行预处理,往往这一步就难住很多同学,无从下手,更别说 training。 然后再对模型进行 finetuning 来更好满足自己的下游任务。那么对于如果要训练一个专家模型。预训练也是必不可缺的工作。不管是预训练还是 finetu...
RAG 与 Finetuning,谁是提升 LLM 的最佳工具? 1、序幕 随着人们对大型语言模型 (LLM) 的兴趣激增,许多开发人员和组织正忙于利用其能力构建应用程序。然而,当开箱即用的预训练LLM没有按预期或希望执行时,如何提高LLM应用的性能的问题。最终我们会问自己:我们应该使用检索增强生成(RAG)还是模型微调来改善结果?
[16] Maybe only 0.5% data is needed: Apreliminary exploration of low training data instruction tuning 技术交流群邀请函 △长按添加小助手 扫描二维码添加小助手微信 请备注:姓名-学校/公司-研究方向 (如:小张-哈工大-对话系统) 即可申请加入自...
选择完后需要对训练数据进行预处理,往往这一步就难住很多同学,无从下手,更别说 training。然后再对模型进行finetuning来更好满足自己的下游任务。那么对于如果要训练一个专家模型。预训练也是必不可缺的工作。不管是预训练还是finetuning(微调),无论选用何种方案,都避免不了训练中产生的灾难性遗忘问题,那么怎么减少...
LLM基础模型系列:Fine-Tuning总览 由于对大型语言模型,人工智能从业者经常被问到这样的问题:如何训练自己的数据?回答这个问题远非易事。生成式人工智能的最新进展是由具有许多参数的大规模模型驱动的,而训练这样的模型LLM需要昂贵的硬件(即许多具有大量内存的昂贵GPU)和花哨的训练技术(例如,完全分片的数据并行训练)。
现在已有研究(参考:On the Role of Bidirectionality in Language Model Pre-Training)证明:如果是以fine-tuning方式解决下游任务,Bert模式的效果优于GPT模式;若是以zero shot/few shot prompting这种模式解决下游任务,则GPT模式效果要优于Bert模式。这说明...
GPT2 FineTuning OpenAI-GPT2 Kaggle short-jokes 数据集 Why will you need fine-tuning an LLM? LLMs are generally trained on public data with no specific focus. Fine-tuning is a crucial step that adapts a pre-trained LLM model to a specific task, enhancing the LLM responses significantly. ...