路线图包括三个主要框架:1)KG增强的LLMs,在LLMs的预训练和推理阶段中引入KGs,或者用于增强LLMs学习到的知识的理解;2)LLM增强的KGs,利用LLMs进行不同的KG任务,如嵌入、补全、构建、图文生成和问答;3)协同作用的LLMs+KGs,在这种框架下,LLMs和KGs发挥相等的作用,通过数据和知识驱动的双向推理方式,相互增强。
✨ Add a new paper or update an existing KG-related LLM paper. 🧐 Use the same format as existing entries to describe the work. 😄 A very brief explanation why you think a paper should be added or updated is recommended (Not Neccessary) via Adding Issues or Pull Requests....
This paper introduces a novel methodology, the Knowledge Graph Large Language Model Framework (KG-LLM), which leverages pivotal NLP paradigms, including chain-of-thought (CoT) prompting and in-context learning (ICL), to enhance multi-hop link prediction in KGs. By converting the KG to a CoT ...
结果: (bornOn: The subject entity was born on the date specified by the object entity.) and (participatedIn: The subject entity took part in the event or mission specified by the object entity.) 3.Schema标准化(Schema Canonicalization):第三阶段将开放知识库(KG)精炼成规范化的形式,消除冗余和...
【KG&LLM相关文献列表】’KG-LLM-Papers - [Paper List] Papers integrating knowledge graphs (KGs) and large language models (LLMs)' ZJUKG GitHub: github.com/zjukg/KG-LLM-Papers #开源# #机器学习# û收藏 9 评论 ñ9 评论 o p 同时转发到我的微博 按热度 按时间 ...
Our KG + LLM reasoning paper:Reasoning on Graphs: Faithful and Interpretable Large Language Model Reasoninghas been accepted by ICLR 2024. Our LLM for KG reasoning paper:ChatRule: Mining Logical Rules with Large Language Models for Knowledge Graph Reasoningis now public. ...
easy to paste and remove . Easy to cut DIY the shape according to your decor area. Offers best quality products. This wallpaper we are is a real wallpaper with factory doneselfadhesive backing. You would be glad that you it. Product features High-density foaming technology Total Three produ...
PPR后排名最高的节点在排名最高的段落中被突出显示。 HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models https://arxiv.org/pdf/2405.14831 https://github.com/OSU-NLP-Group/HippoRAG 1. 2. 3. 复制 本文转载自PaperAgent,作者:PaperAgent...
知识图谱(KG) 知识图谱则是以 (实体、关系、实体) 三元组集合的方式来存储结构化知识。根据所存储信息的不同,现有的知识图谱可分为四大类:百科知识型知识图谱、常识型知识图谱、特定领域型知识图谱、多模态知识图谱。图 5 展示了不同类别知识图谱的例子。
两种问题类型,文档和主题,展示了使用SMART-SLIC RAG和不使用RAG时,LLM的尝试百分比和正确百分比。 https://arxiv.org/pdf/2410.02721Domain-Specific Retrieval-Augmented GenerationUsing Vector Stores, Knowledge Graphs, and Tensor Factorization 来源| PaperAgent...