7b、13b 模型 beta(kl penalty) 0.01;34b 模型 beta 0.005 Early stopping 200~400 iterations 为了训练更快,使用 FSDP 技术,但是这种技术会带来生成过程的速度20倍的下降,作者通过在生成之前一次性将模型权重合并到每个节点中,然后在生成后释放内存,恢复训练循环的其余部分,以缓解这个问题。(没太看懂这个细节) 2.7...
开源的基座模型包括7B、13B、70B3个版本,并提供了对话增强版本的Llama chat和代码增强版本的Code Llama,供开发者和研究人员使用。 两代模型架构区别 Llama 2和初代模型相比,仍然延续Transformer’s decoder-only架构,仍然使用Pre-normalization、SwiGLU激活函数、旋转嵌入编码(RoPE),区别仅在于前述的40%↑的训练数据、...
该平台以百度自研的文心大模型为核心,还支持 ChatGLM2、RWKV、MPT、Dolly、OpenLlama、Falcon 等第三方大模型。而且,刚刚发布十几天的 Llama 2 也已经在他们的模型库中上线(7B、13B、70B 三种版本都有)。再加上,千帆本身就是一个从数据管理、训练调优到大模型发布的一站式工具链平台,刚刚还新增了预置 Pro...
LLaMA 7B和13B使用了1T的训练数据,LLAMA2对应使用了2T的数据,在训练数据上增加了一倍;ChatGLM 6B使用了1T的数据,ChatGLM2 6B使用了1.4T的数据,增加了40%;BaiChuan-7B使用了1.2T的数据,BaiChuan2-7B使用了2.6T的数据,训练数据增加了120%。看的出来,BaiChuan2在6B这个参数量级使用的训练数据是最多的,当然模型的...
以7B为例:一开始,它的损耗下降速度比更大的模型快得多,然后速度减慢,13B模型超过了它,首先达到了1.9。但是,接下来是一个遥远的、意想不到的转折:7B进入一个近乎线性的状态,呈陡峭的下降趋势,似乎正在再次超越13B?很难从这张图上看出如果7B训练得更久会发生什么。然而,13B和33B之间似乎也有同样的行为...
继LLaMA开源后,Meta今天联手微软高调开源Llama 2,一共有7B、13B、70B三个版本。据介绍,Llama 2接受了2万亿个token训练,上下文长度4k,是Llama 1的2倍。微调模型已在超100万个人类标注中进行了训练。Llama 2的表现更是秒杀许多开源语言模型,在推理、编码、能力和知识测试上取得了SOTA。最最最重要的是,这次...
在本研究中,我们采用了LLaMA-2作为基础模型,具体使用了7B和13B两个版本。LLaMA-2模型是在现有的LLaMA模型基础上进行的改进,我们没有对模型架构进行重大更改,仅对RoPE的基数进行了调整,以适应更长的上下文长度。选择LLaMA-2作为基础模型的原因在于其在处理长上下文任务方面已经展现出了强大的性能,而我们的目标是通过持...
Llama 2 模型一共有 7b、13b、34b、70b 4 个版本,其中折衷性能和效率,最受人关注的应该是 34b,但是 Meta 官方还没有释放其对应的权重。这里我们针对次优的 13b 版本进行了性能测试,来评估其部署的成本。模型部署我们选择了当下流行的 llama.cpp,分别测试了 8bit/4bit 量化的推理性能,通过反复执行样例 prompt...