LLaMA-Factory(https://github.com/hiyouga/LLaMA-Factory)是零隙智能(SeamLessAI)开源的低代码大模型训练框架,它集成了业界最广泛使用的微调方法和优化技术,并支持业界众多的开源模型的微调和二次训练,开发者可以使用私域数据、基于有限算力完成领域大模型的定制开发。LLaMA-Factory还为开发者提供了可视化训练、推理平台,...
main() 调试参数设为(参考了LLaMA-Factory/examples/README_zh.md中的微调 推理方法链接的LLaMA-Factory/examples/merge_lora/llama3_lora_sft.yaml设置) --model_name_or_path Qwen/Qwen1.5-0.5B-Chat --template qwen --adapter_name_or_path saves\Qwen1.5-0.5B-Chat\lora\tools_webui --finetuning_type...
LLaMA Factory 是一个用于微调大型语言模型的强大工具,特别是针对 LLaMA 系列模型。可以适应不同的模型架构和大小。支持多种微调技术,如全参数微调、LoRA( Low-Rank Adaptation )、QLoRA( Quantized LoRA )等。还给我们提供了简单实用的命令行接口。支持多 cpu 训练,多任务微调,还有各种内存优化技术,如梯度检...
类似 LLama-Factory 等新工具的出现,使得微调过程更加便捷和高效。此外,现在还可以使用 DPO、ORPO、PPO 和 SFT 等技术进行微调和模型优化。更进一步说,大家现在可以有效地训练和微调如 LLama、Mistral、Falcon 等模型。 什么是模型的微调? 微调模型涉及调整预训练模型或基础模型的参数,这些参数可用于特定任务或数据集,...
LLaMA-Factory是一个非常好用的无代码微调框架,不管是在模型、微调方式还是参数设置上都提供了非常完备的支持,下面是对微调全过程的一个记录。 数据模型准备 微调时一般需要准备三个数据集:一个是自我认知数据集(让大模型知道自己是谁),一个是特定任务数据集(微调时需要完成的目标任务),一个是通用任务数据集(保持...
--stage pt:指定训练阶段为预训练 --do_train:指定是训练任务 --model_name_or_path:本地模型的文件路径或 Hugging Face 的模型标识符 --dataset:指定数据集 --finetuning_type lora:指定微调方法为lora --lora_target q_proj,v_proj:Lora作用模块为q_proj,v_proj 此参数后续详解 --output_dir: 保存训练...
在Web UI界面中,你可以选择模型、数据集和微调参数,然后启动微调过程。 微调过程中,你可以实时查看训练进度和损失曲线。训练完成后,可以使用测试集对微调模型进行性能评估。 四、多卡微调 对于更大规模的大模型,你可能需要使用多卡进行微调。LLaMA-Factory支持多卡微调,但需要在config.yaml文件中进行相应配置。 配置完成...
编者注:之前一直用firefly做微调,最近切换到LLaMA-Factory,发现不但简单易用,而且非常全面,有点相见恨晚的感觉。使用过程中我主要参考2个文档,一个是github上的官方中文文档: https://github.com/hiyouga/LLaMA-Factory/blob/main/README_zh.md 另外一个是官方在知乎上的"LLaMA-Factory QuickStart",以下来自于这篇...
Llama-Factory 利用先进的内存管理机制,结合 FSDP(Fully Sharded Data Parallel) 和 DeepSpeed Zero 技术,实现了微调过程中的高效内存使用。FSDP 通过将模型参数在多个 GPU 之间进行分片存储,避免了单个 GPU 内存的瓶颈。而 DeepSpeed Zero 则进一步优化了数据并行的效率,减少了通信开销。这些技术的结合,使得 Llama...