如果仅在 CPU 上运行,可以直接使用 pip install llama-cpp-python 进行安装。 否则,请确保系统已安装 CUDA,可以通过 nvcc --version 检查。 GGUF 以bartowski/Mistral-7B-Instruct-v0.3-GGUF 为例进行演示。你将在模型界面查看到以下信息:可以看到 4-bit 量化有 IQ4_XS,Q4_K_S, IQ4_NL,Q4_K_M 四种,...
llama_cpp.llama_free(ctx) 搭建与openai接口兼容的服务器接口 llama-cpp-python提供一个 Web服务器,旨在作为 OpenAI API 的直接替代品。 代码语言:text AI代码解释 python3 -m llama_cpp.server --model models/7B/ggml-model.bin 你可以在上面的命令运行成功后访问文档 文档是全英的,想要对话接口的话我用py...
第二步,按照官网的使用脚本 setup.py,进行下一步,结果安装都失败: python setup.py install --home yourPythonPackageshome/cplex python setup.py install 1. 2. 提示错误为: (base) C:\Program Files\IBM\ILOG\CPLEX_Studio129\python>python setup.py install ['C:\\Program Files\\IBM\\ILOG\\CPLEX_S...
首先,我们需要导入相关的库,包括llama_cpp_python、torch和numpy。这些库将帮助我们实现GPU加速。 importllama_cpp_pythonimporttorchimportnumpyasnp 1. 2. 3. 加载模型 接下来,我们需要加载模型。假设我们已经有一个训练好的模型文件model.pth。 model=torch.load('model.pth') 1. 设置GPU运行环境 在使用GPU加速...
ollama 在最新的版本中实现了函数调用,但是处理上还是有一些bug 的,llama-cpp-python web server 是利用了llama.cpp web server 同时进行了一些request 的处理,可以更好的兼容openai 支持了tools 函数调用,以下是基于llama-cpp-python web server 的 一个示例(注意需要模型支持函数调用,比如qwen2 就支持) ...
git clone --recurse-submodulesGitHub - abetlen/llama-cpp-python: Python bindings for llama.cpp cd llama-cpp-python # Upgrade pip (required for editable mode) pip install --upgrade pip 执行结果:(llama_cpp_python) zxj@zxj:~/zxj/llama-cpp-python$ pip install --upgrade pip ...
上面我们已经是说了,GGML是c++库,所以还需要使用Python调用C++的接口,好在这一步很简单,我们将使用llama-cpp-python,这是LLaMA .cpp的Python绑定,它在纯C/ c++中充当LLaMA模型的推理。cpp的主要目标是使用4位整数量化来运行LLaMA模型。这样可以可以有效地利用LLaMA模型,充分利用C/ c++的速度优势和4位整数量化🚀...
llama-cpp-python 推荐的玩法是自己编译,以下是关于cuda 支持编译的简单说明 参考构建命令 命令 exportCUDACXX=/usr/local/cuda-12.5/bin/nvcc# 此处核心是指定了nvcc 编译器路径,同时安装过cuda-drivers , 还需要配置环境变量 exportPATH=$PATH:/usr/local/cuda-12.5/bin/ ...
2023年12月4号更新,根据评论区大佬提示,针对llama-cpp-python不支持后缀为.bin的模型情况,建议使用llama.cpp重新量化模型,生成.gguf格式的模型以解决兼容性问题。2023年11月10号更新,近期用户反馈llama-cpp-python最新版不支持ggmlv3模型,为解决此问题,需手动使用convert-llama-ggmlv3-to-gguf.py...