如果仅在 CPU 上运行,可以直接使用 pip install llama-cpp-python 进行安装。 否则,请确保系统已安装 CUDA,可以通过 nvcc --version 检查。 GGUF 以bartowski/Mistral-7B-Instruct-v0.3-GGUF 为例进行演示。你将在模型界面查看到以下信息:可以看到 4-bit 量化有 IQ4_XS,Q4_K_S, IQ4_NL,Q4_K_M 四种,...
n_tokens = llama_cpp.llama_tokenize(ctx, b"Q: Name the planets in the solar system? A: ", tokens, max_tokens, add_bos=llama_cpp.c_bool(True)) llama_cpp.llama_free(ctx) 搭建与openai接口兼容的服务器接口 llama-cpp-python提供一个 Web服务器,旨在作为 OpenAI API 的直接替代品。 代码语言...
第二步,按照官网的使用脚本 setup.py,进行下一步,结果安装都失败: python setup.py install --home yourPythonPackageshome/cplex python setup.py install 1. 2. 提示错误为: (base) C:\Program Files\IBM\ILOG\CPLEX_Studio129\python>python setup.py install ['C:\\Program Files\\IBM\\ILOG\\CPLEX_S...
首先,我们需要导入相关的库,包括llama_cpp_python、torch和numpy。这些库将帮助我们实现GPU加速。 importllama_cpp_pythonimporttorchimportnumpyasnp 1. 2. 3. 加载模型 接下来,我们需要加载模型。假设我们已经有一个训练好的模型文件model.pth。 model=torch.load('model.pth') 1. 设置GPU运行环境 在使用GPU加速...
llama-cpp-python 包含web server CMAKE_ARGS="-DLLAVA_BUILD=OFF"pipinstallllama-cpp-python[server] 启动服务 下载qwen2:7b的gguf 格式模型 可以直接通过huggingface_hub 工具下载gguf 格式的模型 huggingface-cli download Qwen/Qwen2-7B-Instruct-GGUF qwen2-7b-instruct-q4_0.gguf --local-dir . ...
CMAKE_ARGS="-DGGML_CUDA=on" pip install llama-cpp-python -U --force-reinstall # 执行完到这里应该就没啥问题了,有问题针对提示的错误进行搜索一般都能解决得了 3、python代码示例 fromllama_cppimportLlamaimportjsonfromtqdmimporttqdm# n_gpu_layers:当使用适当的支持(当前是 CLBlast 或 cuBLAS)进行编译...
我们在huggingface上看到很多.safetensors和.bin格式的模型文件我们在使用LM Studio 、Jan、ollama等客户端模型整合工具都会使用到GGUF格式模型文件。 GGUF 由来 Georgi Gerganov(https://github.com/ggerganov)是著名开源项目llama.cpp(https://github.com/ggerganov/llama.cpp)的创始人,它最大的优势是可以在CPU...
搭建与OpenAI接口兼容的服务器,llama-cpp-python提供了一个web服务器作为替代方案。成功运行命令后,可访问文档页面。文档页面为英文,针对需要对话接口的用户,本文提供Python示例。欲自建接口,需遵循法律法规,在个人服务器上启动相关服务,反向代理http://localhost:8000地址,如代理到https://example.com...
-w /llama.cpp/ \ llm:v1.4 运行脚本后可以直接进入环境。 1.2 量化 量化分为两步: 将原始的模型转换为gguf模型 python3 convert-hf-to-gguf.py [model_path] --outfile [gguf_file].gguf # example Qwen1.5-7b-chat # 注意这里使用的是挂载在的哦参考而中的transformers的默认cache地址 ...