之后,我们测试了 4 比特优化器的内存和计算效率,结果如下表所示。相比 8 比特优化器,本文提出的 4 比特优化器能够节省更多内存,在 LLaMA-7B 微调的实验中最高节省 57.7%。此外,我们提供了 4 比特 AdamW 的融合算子版本,它能够在节省内存的同时不影响计算效率。对于 LLaMA-7B 的指令微调任务,由于缓存压力...
all_generated_instances.jsonl,all_generated_instances.jsonl中包含的是 instruction,input,output,这是用于微调LLaMA-7B的格式。 gpt3_finetuning_data_xxx.jsonl,包含的是prompt,completion,这是用于微调GPT3的格式。 Alpaca-LoRA LoRA可以降低微调LLM的成本,在神经⽹络模型中,模型参数通常以矩阵的形式表示。对于...
本文基于Alpaca提供了一套LLaMA-7B模型在阿里云ECS上进行指令微调的训练方案,最终可以获得性能更贴近具体使用场景的语言模型。 背景信息 LLaMA(Large Language Model Meta AI)是Meta AI在2023年2月发布的开放使用预训练语言模型(Large Language Model, LLM),其参数量包含7B到65B的集合,并仅使用完全公开的数据集进行...
【新智元导读】开源万能模型微调工具LLaMA-Adapter发布,支持多模态输入输出。 LLaMA-Adapter,现在已经完全解锁了。 作为一个通用的多模态基础模型,它集成了图像、音频、文本、视频和3D点云等各种输入,同时还能提供图像、文本和检测的输出。 相比于之前已经推出的LLaMA-Adapter,这次的升级版研究人员将它命名为LLaMA-adapter...
这里我们要基于LLAMA-7B做指令微调,所以要先下载模型权重,并作一系列转换。 切换到 lit-llama 所在位置,使用以下命令下载权重: (文件有点大,需要等待一些时间) 下载完毕之后,会得到如下的文件: 5. 做模型转换 还是切换到 lit-llama 所在位置,使用以下指令进行转换 转换完毕之后,在 lit-llama...
模型微调 模型推理 将LoRA 权重合并回基础模型 封装为Docker镜像并进行推理 结语 之前尝试了从0到1复现斯坦福羊驼(Stanford Alpaca 7B),Stanford Alpaca 是在 LLaMA 整个模型上微调,即对预训练模型中的所有参数都进行微调(full fine-tuning)。但该方法对于硬件成本要求仍然偏高且训练低效。 因此, Alpaca-Lora 则是利...
微调7B模型只用单GPU!通用多模态工具LLaMA-Adapter拆掉门槛,效果惊人 新智元报道 编辑:Aeneas 润 【新智元导读】开源万能模型微调工具LLaMA-Adapter发布,支持多模态输入输出。 LLaMA-Adapter,现在已经完全解锁了。 作为一个通用的多模态基础模型,它集成了图像、音频、文本、视频和3D点云等各种输入,同时还能提供图像、文本...
微调7B模型只用单GPU!通用多模态工具LLaMA-Adapter拆掉门槛,效果惊人 新智元报道 编辑:Aeneas 润 【新智元导读】开源万能模型微调工具LLaMA-Adapter发布,支持多模态输入输出。 LLaMA-Adapter,现在已经完全解锁了。 作为一个通用的多模态基础模型,它集成了图像、音频、文本、视频和3D点云等各种输入,同时还能提供图像、文本...
Alpaca-Lora,一个基于LLaMA(7B)的微调方法,能够在短短的二十分钟内完成微调过程,同时实现与斯坦福羊驼相当的效果。这一技术的出现,无疑为大型语言模型的快速适应和应用开辟了新的道路。 Alpaca-Lora的核心思想是利用轻量级的微调技术——LoRA(Low-Rank Adaptation)。LoRA通过在原始模型的基础上添加低秩矩阵,实现对模型...
经过微调后,LLaMA-Adapter可以生成高质量的指令跟随句子,可与完全微调的Alpaca和Alpaca-Lora相媲美。 此方法可以简单地扩展到多模态输入指令。用于ScienceQA的图像条件LLaMA-Adapter的推理框架如下,其他模态(如音频和视频)也共享该框架。 LLaMA-Adapter V2让多模态和语言能力进一步提升 ...