大模型的训练和微调对显存要求很高,优化器状态是显存主要开销之一。近日,清华大学朱军、陈键飞团队提出了用于神经网络训练的 4 比特优化器,节省了模型训练的内存开销,同时能达到与全精度优化器相当的准确率。4 比特优化器在众多预训练和微调任务上进行了实验,在保持准确率无损的情况下可将微调 LLaMA-7B 的显存开销...
如果模型参数量为 N,那么 AdamW 中优化器状态的数量为 2N,这显然是一笔极大的显存开销。 以LLaMA-7B 为例,该模型含的参数数量大约 7B,如果使用全精度(32 比特)的 AdamW 优化器对它进行微调,那么优化器状态所占用的显存大小约为 52.2GB。此外,虽然朴素的 SGD 优化器不需要额外状态,节省了优化器状态所占用的...
如果模型参数量为 N,那么 AdamW 中优化器状态的数量为 2N,这显然是一笔极大的显存开销。 以LLaMA-7B 为例,该模型含的参数数量大约 7B,如果使用全精度(32 比特)的 AdamW 优化器对它进行微调,那么优化器状态所占用的显存大小约为 52.2GB。此外,虽然朴素的 SGD 优化器不需要额外状态,节省了优化器状态所占用的...
如果模型参数量为 N,那么 AdamW 中优化器状态的数量为 2N,这显然是一笔极大的显存开销。 以LLaMA-7B 为例,该模型含的参数数量大约 7B,如果使用全精度(32 比特)的 AdamW 优化器对它进行微调,那么优化器状态所占用的显存大小约为 52.2GB。此外,虽然朴素的 SGD 优化器不需要额外状态,节省了优化器状态所占用的...
大模型的训练和微调对显存要求很高,优化器状态是显存主要开销之一。近日,清华大学朱军、陈键飞团队提出了用于神经网络训练的 4 比特优化器,节省了模型训练的内存开销,同时能达到与全精度优化器相当的准确率。 4 比特优化器在众多预训练和微调任务上进行了实验,在保持准确率无损的情况下可将微调 LLaMA-7B 的显存开销降...
大模型的训练和微调对显存要求很高,优化器状态是显存主要开销之一。近日,清华大学朱军、陈键飞团队提出了用于神经网络训练的 4 比特优化器,节省了模型训练的内存开销,同时能达到与全精度优化器相当的准确率。 4 比特优化器在众多预训练和微调任务上进行了实验,在保持准确率无损的情况下可将微调 LLaMA-7B 的显存开销降...
大模型的训练和微调对显存要求很高,优化器状态是显存主要开销之一。近日,清华大学朱军、陈键飞团队提出了用于神经网络训练的 4 比特优化器,节省了模型训练的内存开销,同时能达到与全精度优化器相当的准确率。 4 比特优化器在众多预训练和微调任务上进行了实验,在保持准确率无损的情况下可将微调 LLaMA-7B 的显存开销降...
大模型的训练和微调对显存要求很高,优化器状态是显存主要开销之一。近日,清华大学朱军、陈键飞团队提出了用于神经网络训练的 4 比特优化器,节省了模型训练的内存开销,同时能达到与全精度优化器相当的准确率。 4 比特优化器在众多预训练和微调任务上进行了实验,在保持准确率无损的情况下可将微调 LLaMA-7B 的显存开销降...
以LLaMA-7B 为例,该模型含的参数数量大约 7B,如果使用全精度(32 比特)的 AdamW 优化器对它进行微调,那么优化器状态所占用的显存大小约为 52.2GB。此外,虽然朴素的 SGD 优化器不需要额外状态,节省了优化器状态所占用的内存,但是模型的性能难以保证。因此,本文主要关注如何减少模型内存中的优化器状态,同时保证优化...
在alpaca-lora-main/finetune.py中,设置batch_size=4(micro_batch_size: int = 4)以适配16GB的单个GPU(显存占用9GB),由于微调时间很长,大约60h,所以新建finetune.sh后台运行: 可以直接获取已经训练好的LoRA权重(67MB): 或者获取通过GPT4生成指令数据微调后的LoRA权重(模型为LLaMA-7B,主要微调方式为Alp...