Part 1: Fine-tune a Llama2-7b model using PEFT We are going to use the recently introduced method in the paper QLoRA: Quantization-aware Low-Rank Adapter Tuning for Language Generation by Tim Dettmers et al. QLoRA is a new technique to reduce the memory ...
To get started on fine-tuning large language models using BigDL LLM and the QLoRA technique, we have developed a comprehensive step-by-step Jupyter notebook. Begin by registering for a free standard account on theIntel® Tiber™ AI Cloud. Once registered, go to theconsole home...
QLoRA参数: QLoRA将使用64的秩(rank)和16的缩放参数(scaling parameter)。关于LoRA参数的更多信息,可以参考相关的文章 这些参数影响模型训练过程中参数微调的细节,特别是与模型复杂性和内存效率相关。 模型加载和训练: 将直接以4位精度使用NF4类型加载Llama 2模型,并训练1个 epoch。 使用4位精度和NF4类型有助于减少...
Fine-tune the recent Llama-2-7b model on a single GPU and turn it into a chatbot I will leverage PEFT library from Hugging Face ecosystem, as well as QLoRA for more memory efficient finetuning. - DavidLanz/Llama2-Fine-Tuning-using-QLora
LLM(大型语言模型)微调(Fine-tuning)是指在特定任务上调整或优化预训练的大型语言模型的过程。通过微调...
Learn to fine-tune Llama2 more efficiently with recently enabled Low-Rank Adaptations (LoRA) on Intel Gaudi processors In the rapidly evolving field of Generative AI (GenAI), fine-tuning large language models (LLMs) like LLama2 presents unique challenges due to the computational and m...
向量数据库可以高效地存储大量的文本和向量,同时也有快速的的查询性能。Fine-Tuning(模型微调):使用准备好的知识库对LLM进行fine-tuning,让LLM成为领域专家,经常使用lora等低成本finetune,毕竟LLM的全参调参也是非常耗GPU的,从成本考虑不如RAG 向量知识库的形式,效果上很多业务下会比向量数据库略优。
对于函数调用,因为后续会进行 qlora 微调,所以直接采用 huggingface 上开源函数调用数据集 [3] 中的 prompt 样式。请参见下文。 指令数据集准备 3.1 数据来源 拆任务模型:Marcoroni-70B 采用的是 alpaca 的提示模板。该模型在 Llama2 70B 上进行指令微调,为和原始模型的模板进行对齐,需采用 alpaca 格式的数据集...
LoraConfig, PeftModel, get_peft_model, get_peft_model_state_dict, prepare_model_for_int8_training, prepare_model_for_kbit_training, set_peft_model_state_dict, ) import transformers from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR ...
model 在LoRA 微调之后,原模型和 LoRA 模块的结合: # 定义一个 PeftModelForCausalLM 类,它是基于 PEFT(Parameter-Efficient Fine-Tuning)技术的因果语言模型PeftModelForCausalLM(# 基础模型部分,使用 LoraModel 封装(base_model):LoraModel(# 模型具体类型为 LlamaForCausalLM,是一个针对因果语言建模的特殊模型(...