Parameter-Efficient Fine-Tuning(PEFT)可以用于在不触及LLM的所有参数的情况下对LLM进行有效的微调。PEFT支持QLoRa方法,通过4位量化对LLM参数的一小部分进行微调。Transformer Reinforcement Learning (TRL)是一个使用强化学习来训练语言模型的库。TRL也提供的监督微调(SFT)训练器API可以让我们快速的微调模型。!pip insta...
Parameter Efficient Fine-Tuning(PEFT)方法是一组使llm适应下游任务的方法,例如在内存受限的设备(如T4GPU 提供16GB VRAM)上进行摘要或问答。通过Peft对LLM的部分进行微调,仍然可以获得与完全微调相比的结果。如LoRA和Prefix Tuning是相当成功的。peft库是一个HuggingFace库,它提供了这些微调方法,这是一个可以追溯到2023...
我们正在使用一种称为QLoRA的量化版本的LoRA,这意味着我们希望在LoRA微调中使用量化,将量化应用于我们前面提到的更新权重(以及其他可以量化的操作)。 参数use_4bit(第6行)设置为True,以使用高保真的4位微调,这是后来在QLoRA论文中引入的,以实现比LLM.int8论文中引入的8位量化更低的内存要求。 设置bnb_4bit_com...
Parameter-Efficient Fine-Tuning(PEFT)可以用于在不触及LLM的所有参数的情况下对LLM进行有效的微调。PEFT支持QLoRa方法,通过4位量化对LLM参数的一小部分进行微调。 Transformer Reinforcement Learning (TRL)是一个使用强化学习来训练语言模型的库。TRL也提供的监督微调(SFT)训练器API可以让我们快速的微调模型。 !pip in...
Parameter Efficient Fine-Tuning(PEFT)方法是一组使llm适应下游任务的方法,例如在内存受限的设备(如T4GPU 提供16GB VRAM)上进行摘要或问答。通过Peft对LLM的部分进行微调,仍然可以获得与完全微调相比的结果。如LoRA和Prefix Tuning是相当成功的。peft库是一个HuggingFace库,它提供了这些微调方法,这是一个可以追溯到2023...
Parameter Efficient Fine-Tuning(PEFT)方法是一组使llm适应下游任务的方法,例如在内存受限的设备(如T4GPU 提供16GB VRAM)上进行摘要或问答。通过Peft对LLM的部分进行微调,仍然可以获得与完全微调相比的结果。如LoRA和Prefix Tuning是相当成功的。peft库是一个HuggingFace库,它提供了这些微调方法,这是一个可以追溯到2023...
Fine-tune the recent Llama-2-7b model on a single GPU and turn it into a chatbot I will leverage PEFT library from Hugging Face ecosystem, as well as QLoRA for more memory efficient finetuning. - DavidLanz/Llama2-Fine-Tuning-using-QLora
Parameter Efficient Fine-Tuning(PEFT)方法是一组使llm适应下游任务的方法,例如在内存受限的设备(如T4GPU 提供16GB VRAM)上进行摘要或问答。通过Peft对LLM的部分进行微调,仍然可以获得与完全微调相比的结果。如LoRA和Prefix Tuning是相当成功的。peft库是一个HuggingFace库,它提供了这些微调方法,这是一个可以追溯到2023...
LLM(大型语言模型)微调(Fine-tuning)是指在特定任务上调整或优化预训练的大型语言模型的过程。通过微调,模型能够更好地适应和处理特定类型的数据或解决特定的问题。这一过程通常包括以下几个步骤: 选择模型:…
Parameter Efficient Fine-Tuning(PEFT)方法是一组使llm适应下游任务的方法,例如在内存受限的设备(如T4GPU 提供16GB VRAM)上进行摘要或问答。通过Peft对LLM的部分进行微调,仍然可以获得与完全微调相比的结果。如LoRA和Prefix Tuning是相当成功的。peft库是一个HuggingFace库,它提供了这些微调方法,这是一个可以追溯到2023...