import numpy as np from time import time from scipy.stats import randint as sp_randint # 随机产生均匀分布的整数 from sklearn.model_selection import RandomizedSearchCV from sklearn.datasets import load_digits from skl
from sklearn.linear_model import LogisticRegression from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier, RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cross_validation import cross_val_score 1. 2. 3. 4. 5. 6....
# 导入线性回归模型from sklearn.linear_model import LinearRegression# 创建线性回归模型对象model = LinearRegression()# 在训练集上拟合模型model.fit(X_train, y_train)# 在测试集上进行预测y_pred = model.predict(X_test)print(y_pred.shape)print(y_pred[:10])输出:(89,)[139.5475584179.51720835134....
sklearn是python的一个包,也是机器学习中常用的一个模块,里面封装了很多机器学习的算法,不需要对机器学习算法的实现,只需要简单地调用sklearn里相对应的模块即可。 机器学习任务通常包括分类classification、回归Regression,常用的分类器包括SVM、KNN、贝叶斯、线性回归、逻辑回归、决策树、随机森林、xgboost、GBDT、boosting...
在github可以找到LinearRegression的源码:LinearRegression 主要思想:sklearn.linear_model.LinearRegression求解线性回归方程参数时,首先判断训练集X是否是稀疏矩阵,如果是,就用Golub&Kanlan双对角线化过程方法来求解;否则调用C库中LAPACK中的用基于分治法的奇异值分解来求解。在sklearn中并不是使用梯度下降法求解线性回归,...
import numpy as np import pandas as pd from sklearn.feature_selection import RFE from sklearn.linear_model import LinearRegression def excel_one_line_to_list(): X = pd.read_excel("G:\毕业论文\B数据集\水稻稻叶瘟\data1.xls", usecols=[0,1,2,3,4,5],names=None) names = X.columns....
from sklearn.linear_model import LinearRegression import numpy as np # Create a dataset x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1)) y = np.array([5, 20, 14, 32, 22, 38]) # Create a model and fit it ...
import sklearn from sklearn.linear_model import LinearRegression X= [[0, 0], [1, 2], [2, 4]] y= [0,1,2] clf= LinearRegression() #fit_intercept=True #默认值为True,表示计算随机变量,False表示不计算随机变量 #normalize=False
LinearRegression sklearn参数 SVM参数解释 (1)C: 目标函数的惩罚系数C,用来平衡分类间隔margin和错分样本的,default C = 1.0; (2)kernel:参数选择有RBF, Linear, Poly, Sigmoid, 默认的是"RBF"; (3)degree:if you choose 'Poly' in param 2, this is effective, degree决定了多项式的最高次幂;...
最近这段时间学习了机器学习中的线性模型,用自己定义的最小二乘法函数和sklearn中的linear_model方法完成了几个小实例,具体就是通过我们班同学的各科成绩来预测最后的平均绩点模型,但不清楚sklearn库中的源码就直接调用都有点不好意思了~~在这里主要还是想记录一下我对于LinearRegression的理解。