from sklearn import metrics from sklearn import datasets boston = datasets.load_boston() # 载入boston房价模型 print(dir(boston),"\n",boston.data.shape,"\n",boston.target.shape) #查看模型描述, 特征值数量, 目标数量 from sklearn import linear_model linereg01= linear_model.LinearRegression() ...
# 导入线性回归模型from sklearn.linear_model import LinearRegression# 创建线性回归模型对象model = LinearRegression()# 在训练集上拟合模型model.fit(X_train, y_train)# 在测试集上进行预测y_pred = model.predict(X_test)print(y_pred.shape)print(y_pred[:10])输出:(89,)[139.5475584179.51720835134....
在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析,这种函数是一个或多个被称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的称为多元回归。 回归算法源于统计学理论,它可能是机器学习算...
我们定义了cost function(损失函数): 如果你以前学过线性回归,你可能认为这个函数和最小均方损失函数(least-squares cost function )很类似,并提出普通最小二乘法回归模型(ordinary least squares regression model)。 三、普通最小二乘法(ordinary least squares) 最小二乘法(又称最小平方法)是一种数学优化技术,...
from sklearn import linear_model 1. 新建python文件后输入上行代码 ,按住Ctrl键左键点击linear_model就会进入_init_.py,在里面找到'LinearRegression',同样按住Ctrl键左键点击进入_base.py,此时看到的就是sklearn中线性回归模型的源码。 ###从这里开始看 ### class LinearRegression(MultiOutputMixin, RegressorMixin...
我们也可以使用scikit-learn的线性回归函数,而不是从头开始实现这些算法。 我们将scikit-learn的线性回归算法应用于编程作业1.1的数据,并看看它的表现。 一般来说,只要觉得数据有线性关系,LinearRegression类是我们的首选。如果发现拟合或者预测的不好,再考虑用其他的线性回归库。如果是学习线性回归,推荐先从这个类开始第...
To get a practical sense of multiple linear regression, let's keep working with our gas consumption example, and use a dataset that has gas consumption data on 48 US States. Note:You can download the gas consumption dataset onKaggle. You can learn more about the details on the datasethere...
regr = linear_model.LinearRegression() regr.fit(x, y) # plot it as in the example at http://scikit-learn.org/ plt.scatter(x, y, color='black') plt.plot(x, regr.predict(x), color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show() See sklear...
本文简要介绍python语言中 sklearn.linear_model.LinearRegression 的用法。 用法: class sklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize='deprecated', copy_X=True, n_jobs=None, positive=False) 普通最小二乘线性回归。 LinearRegression 使用系数 w = (w1, …, wp) 拟合线性模型,...
from sklearn.linear_model import LinearRegression import numpy as np # Create a dataset x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1)) y = np.array([5, 20, 14, 32, 22, 38]) # Create a model …