# 导入线性回归模型from sklearn.linear_model import LinearRegression# 创建线性回归模型对象model = LinearRegression()# 在训练集上拟合模型model.fit(X_train, y_train)# 在测试集上进行预测y_pred = model.predict(X_test)print(y_pred.shape)print(y_pred[:10])输出:(89,)[139.5475584179.51720835134....
),不相关(图像不具有单调性) 1.3计算相关系数 ###相关系数的计算:相关系数的计算结果的绝对值越接近于1,表明这两个变量之间的相关性越高的,大于1是正相关,小于0是负相关; import pandas...# 导入sklearn.linear_model模块中的LinearRegression函数 from sk...
Linear Regression Example 代码主要来自:http://scikit-learn.org/stable/ 误差函数: 采用最小二平方 代码如下: print(__doc__)importmatplotlib.pyplot as pltimportnumpy as npfromsklearnimportdatasets, linear_modelfromsklearn.metricsimportmean_squared_error, r2_score diabetes=datasets.load_diabetes() diabe...
sklearn的Linearregression线性回归方法 from sklearn.linear_model import LinearRegression import numpy as np # Create a dataset x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1)) y = np.array([5, 20, 14, 32, 22, 38]) # Create a model and fit it model = LinearRegressio...
from sklearn.svm import SVC from sklearn.cross_validation import cross_val_score 1. 2. 3. 4. 5. 6. 然后依次建立模型,基本都用模型的默认参数,最后建立一个数组,存入方法,方便循环调用 KnnMod = KNeighborsClassifier() LrMod = LogisticRegression() ...
classsklearn.linear_model.LinearRegression(*,fit_intercept=True,normalize=False,copy_X=True,n_jobs=None, positive=False) 1. 2. 通过基础模型的了解可以看出,线性回归模型需要设定的参数并没有大量的数据参数,并且也没有必须设定的参数。这就说明线性回归模型的生成很大程度上取决于原始数据集本身。
It's best to start simple; therefore, we'll look at linear regression first. Linear regression ...
sklearn是python的一个包,也是机器学习中常用的一个模块,里面封装了很多机器学习的算法,不需要对机器学习算法的实现,只需要简单地调用sklearn里相对应的模块即可。 机器学习任务通常包括分类classification、回归Regression,常用的分类器包括SVM、KNN、贝叶斯、线性回归、逻辑回归、决策树、随机森林、xgboost、GBDT、boosting...
class sklearn.linear_model.LinearRegression (fifit_intercept=True, normalize=False, copy_X=True, n_jobs=None) 1. 导入需要的模块和库 fromsklearn.linear_modelimportLinearRegression as LRfromsklearn.model_selectionimporttrain_test_splitfromsklearn.model_selectionimportcross_val_scorefromsklearn.datasets...
本文简要介绍python语言中sklearn.linear_model.LinearRegression的用法。 用法: classsklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize='deprecated', copy_X=True, n_jobs=None, positive=False) 普通最小二乘线性回归。 LinearRegression 使用系数 w = (w1, …, wp) 拟合线性模型,以最...