45. 跳跃游戏 II开始:嘻嘻,简单dp 提交:打败5%,不嘻嘻 优化:双指针 模拟区间覆盖 提交:打败100%, 嘻嘻 默认
publicintjump(int[] nums) {intend = 0;intmaxPosition = 0;intsteps = 0;for(inti = 0; i < nums.length - 1; i++) {//找能跳的最远的maxPosition = Math.max(maxPosition, nums[i] +i);if(i == end) {//遇到边界,就更新边界,并且步数加一end =maxPosition; steps++; } }returnsteps...
LeetCode 45. Jump Game II 程序员木子 香港浸会大学 数据分析与人工智能硕士在读 Description Given an array of non-negative integers, you are initially positioned at the first index of the array. Each element in the array represents your maximum jump length at that position. Your goal is...
have bugs, the problem in the code: do not understand or realize when we need to do hops++!!! That is to say: i did not find the way to solove this question 1publicintjump(int[] A) {2//Start typing your Java solution below3//DO NOT write main() function4intlen =A.length;5...
Can you solve this real interview question? Jump Game II - You are given a 0-indexed array of integers nums of length n. You are initially positioned at nums[0]. Each element nums[i] represents the maximum length of a forward jump from index i. In other
Leetcode 45 Jump Game II 跳跃游戏II 结论:只有在无法到达更远的位置时,才选择跳跃,选择一个可以达到更远位置的位置,跳到这个位置后,再往前跳! 其他解法: 这题是之前那道上一题的延伸,那题是问能不能到达最后一个数字,而此题只让我们求到达最后一个位置的最少跳跃数,貌似是默认一定能到达最后位置的? 此...
来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/jump-game-ii/著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。解法一:穷举法 首先,如果nums的长度为1,因为不需要走,直接返回0;如果nums的长度为2,由于一定可以到达最后一个位置,而且至少需要一步,直接返回1;当不是前...
然后我们可以跳 1,2,3 个距离,我们选择跳 3 个距离,就直接到最后了。所以总共需要 2 步。解法一 :顺藤摸瓜LeetCode 讨论里,大部分都是这个思路,贪婪算法,我们每次在可跳范围内选择可以使得跳的更远的位置。如下图,开始的位置是 2,可跳的范围是橙色的。然后因为 3 可以跳的更远,所以跳到 3 的位置。{...
【LeetCode】45. Jump Game II Given an array of non-negative integers, you are initially positioned at the first index of the array. Each element in the array represents your maximum jump length at that position. Your goal is to reach the last index in the minimum number of jumps. ...
Jump Game II -- LeetCode 原题链接:http://oj.leetcode.com/problems/jump-game-ii/ 这道题是Jump Game的扩展,区别是这道题不仅要看能不能到达终点,而且要求到达终点的最少步数。其实思路和Jump Game还是类似的,只是原来的全局最优现在要分成step步最优和step-1步最优(假设当前步数是step)。当走到超过...