摘要 本发明公开一种基于LDA模型与LSTM网络的文本数据语义时空模式探索方法,包括以下步骤:(1)集成主题模型;包括主题生成、主题质量评估和主题降维投影;使用LDA主题模型对文本数据提取语义,通过迭代不同参数生成主题模型,对主题模型进行质量评估后选择优质主题进行集成,以解决参数对模型质量的影响;(2)构建主题时空体;将文本...
该方法首先基于SBERT预训练模型和Attention机制对烟草问句进行动态编码,转换为富含语义信息的特征向量,同时利用LDA模型建模出问句的主题向量,捕捉问句中的主题信息;然后通过更改后的模型级特征融合方法ML-LSTM获得具有更为完整,准确问句语义的联合特征表示;再使用3通道的卷积神经网络(Convolutional neural network,CNN)提取...