(1) Lattice LSTM 名字来由 我们可以发现在上图左侧所示网络中,除主干部分 基于字的LSTM 外,还连接了许多「格子」,每个「格子」里各含有一个潜在的词,这些潜在词所含有的信息将会与主干LSTM中相应的 Cell 融合,看起来像一个「网格(Lattice)」。所以论文模型的名字就叫做 Lattice LSTM,也就是有网格结构的LSTM模型...
Lattice LSTM模型,能够通过门控单元,将不同的词信息传递到每个字符,这种结构能够从上下文中自动发现更加有用的词,提升NER的效果。比起基于字符和基于词的方法,这种结构能够有效的利用词信息,而且也不会出现分词错误。 图1 Lattice LSTM结构 2.模型 2.1 LSTM结构 LSTM是RNN的一个变体,能够有效解决梯度消失和梯度爆炸...
Lattice LSTM模型结构如上图右侧所示。在正式开始介绍Lattice LSTM前,我们先来看看上图左半部分。 (1)Lattice LSTM 名字来由 我们可以发现在上图左侧所示网络中,除主干部分基于字的LSTM外,还连接了许多「格子」,每个「格子」里各含有一个潜在的词,这些潜在词所含有...
Lattice LSTM模型是基于词汇增强方法的中文NER的开篇之作。在该模型中,使用了字符信息和所有词序列信息,具体地,当我们通过词汇信息(词典)匹配一个句子时,可以获得一个类似Lattice的结构。这种方式可以避免因分词错误导致实体识别错误,在中文NER任务上有显著效果。 模型结构 LSTM结构 LSTM是RNN的一个变体,能够有效解决梯...
对于中文命名实体是识别,考虑到实际生产应用,本文主要针对Lattice-LSTM模型的弊端(复杂的模型结构和计算效率低),提出了一种简洁而有效的方法,即将字符符号信息合并到字符向量表示中。这样,我们的方法可以避免引入复杂的序列建模体系结构来对词汇信息进行建模。相反,它只需要微调神经序列模型的字符表示层。通过在四组中文基...
(1)Lattice LSTM 名字来由 我们可以发现在上图左侧所示网络中,除主干部分基于字的LSTM外,还连接了许多「格子」,每个「格子」里各含有一个潜在的词,这些潜在词所含有的信息将会与主干LSTM中相应的Cell融合,看起来像一个「网格(Lattice)」。所以论文模型的名字就叫做Lattice LSTM,也就是有网格结构的LSTM模型。
上面是 Char-LSTM 的计算公式,Lattice LSTM 在这基础上增加了 word-base cell,用于计算单词子序列的 cell state c。下面的图展示了 word-base cell 的结构:Word-base cell 计算公式如下,生成一个包含单词信息的 cell state:在上式中,word-base cell 是不包括输出门向量的,因为 Lattice LSTM 只在 Char-...
命名实体识别Lattice LSTM 论文使用了Lattice结构LSTM模型应用于命名实体识别,模型对一系列输入字符以及所有与词典匹配的潜在单词进行编码,与基于字符的方法相比,我们的模型显式地利用了单词和单词序列信息。与基于词的方法相比,lattice LSTM不存在分割错误。模型利用显式单词进行字符序列标记,不会出现分割错误。
图2:Lattice LSTM 结构。 结果显示该模型显著优于基于字符的序列标注模型和使用 LSTMCRF 的基于词的序列标注模型,在不同领域的多个中文 NER 数据集上均获得最优结果。 模型 研究者遵循最好的英文 NER 模型(Huang et al., 2015; Ma and Hovy, 2016; Lample et al., 2016),使用 LSTM-CRF 作为主要网络结构...
中文翻译2:ChineseNER Using LatticeLSTM笔记 介绍 这是一篇2018年发表于 ACL(自然语言处理顶会) 的论文,文中提出了一种基于格子(Lattice)结构的LSTM模型,用于优化中文的命名实体识别。具体方法结合了字序列和词序列两种方式(考虑可能出现的各种分词情况)。相对于基于"字序列”的方法,模型能兼顾词间关系;相对于”词...