Predictors of class membership Multinomial logistic model Starting values EM algorithm Fixed or random starting values Select number of random draws Constraints Easily specify equality constraints across classes Constrain one parameter Cross-class equality constraints—just typelcinvariant(cons)to constrain inte...
这个例子说明了定义“潜在类的最佳数量”的复杂性。事实上,根据推荐的 BIC,应该保留 2 类模型(因为它提供了最低值)。但是 AIC 和 Size 调整 BIC(涉及较小的惩罚)都支持 3-class 模型。熵也有利于 3 类模型,因为它具有更好的判别能力(熵接近 1)。最后,3-class 模型创建了一个非常小的类,这通常不是那些...
latent class analysis stata命令 Stata中没有直接的命令来执行潜在类别分析(Latent Class Analysis, LCA),但您可以使用其他方法来实现。以下是一种可能的两步方法: 1.使用聚类算法(如k均值聚类)对数据进行聚类分析生成初始分类变量。 例如,可以使用`cluster`命令将数据分成几个集群,然后根据聚类结果创建一个分类变量...
covariates determining the probability of class membership items that are binary, ordinal, continous, or even any of the other types that Stata'sgsemcan fit SEM path models that vary across latent classes Let's see it work Let's work with a classic model using an example of teen behavior ...
2-class 线性混合模型的描述 模型概要 summary(m2d) 模型的预测 只要模型中指定的所有协变量都包含在数据框中,就可以为数据框中包含的任何数据计算特定于类的预测。在接下来的几行中,通过生成年龄值介于 65 和 95 之间的向量并将 CEP定义为 1 或 0,来创建这样的数据框 。计算和绘制 预测 。
2-class 线性混合模型的描述 模型概要 summary(m2d) 模型的预测 只要模型中指定的所有协变量都包含在数据框中,就可以为数据框中包含的任何数据计算特定于类的预测。在接下来的几行中,通过生成年龄值介于 65 和 95 之间的向量并将 CEP定义为 1 或 0,来创建这样的数据框 。计算和绘制 预测 。
2-class 线性混合模型的描述 模型概要 summary(m2d) 模型的预测 只要模型中指定的所有协变量都包含在数据框中,就可以为数据框中包含的任何数据计算特定于类的预测。在接下来的几行中,通过生成年龄值介于 65 和 95 之间的向量并将 CEP定义为 1 或 0,来创建这样的数据框 。计算和绘制 预测 。
2-class 线性混合模型的描述 模型概要 summary(m2d) 模型的预测 只要模型中指定的所有协变量都包含在数据框中,就可以为数据框中包含的任何数据计算特定于类的预测。在接下来的几行中,通过生成年龄值介于 65 和 95 之间的向量并将 CEP定义为 1 或 0,来创建这样的数据框 。计算和绘制 预测 。
我们在这里总结了我们之前估计的 6 个模型。我们可以看到所有的 2-class 模型都收敛于同一个估计点。 这个例子说明了定义“潜在类的最佳数量”的复杂性。事实上,根据推荐的 BIC,应该保留 2 类模型(因为它提供了最低值)。但是 AIC 和 Size 调整 BIC(涉及较小的惩罚)都支持 3-class 模型。熵也有利于 3 类模...
R语言潜类别混合效应模型(Latent Class Mixed Model ,LCMM)分析老年痴呆年龄数据 原文链接:http://tecdat.cn/?p=24647 背景和定义 线性混合模型假设 N 个受试者的群体是同质的,并且在群体水平上由独特的曲线 Xi(t)β 描述。相比之下,潜在类别混合模型在于假设人口是异质的,并且由 G 潜在类别的受试者组成,其...