Language Model (语言模型)是一种统计模型,用于预测一系列单词在文本序列中的概率。作为基于人工神经网络的一项重要人工智能技术,Language Model 通过对大规模文本数据进行训练,以理解语言并预测序列中的下一个单词。 LLM (大型语言模型),后续简称为“LLM”,则是一种具备大量可调参数的神经网络,使其能够学习语言中的复...
但是研究人员发现,通过语境学习(Incontext Learning,ICL)等方法,直接使用大规模语言模型就可以在很多任务的少样本场景下取得了很好的效果。此后,研究人员们提出了面向大规模语言模型的提示词(Prompt)学习方法、模型即服务范式(Model as a Service,MaaS)、指令微调(Instruction Tuning)等方法, 2022 年底ChatGPT 的出现,...
基于自编码器的模型(Autoencoder-Based Model) 一种类型的大型语言模型是基于自编码器的模型,它通过将输入文本编码为较低维度的表示,然后根据该表示生成新的文本。这种类型的模型在文本摘要或内容生成等任务中表现出色。 序列到序列模型(Sequence-to-Sequence Model) 另一种类型的大型语言模型是序列到序列模型,它接收...
一文读懂「LLM,Large Language Model」大语言模型 2023年是大语言模型(Large Language Model,LLM)应用爆发的元年,大语言模型将从2023年开始推动整个人工智能及IT产业快速进入新时代。 如果说2000年至2010年是PC互联网时代,2011年至2020年是移动互联网时代,那么自2023年起的未来10年就是大语言模型主导的人工智能时代。
Large language models are still in their early days, and their promise is enormous; a single model with zero-shot learning capabilities can solve nearly every imaginable problem by understanding and generating human-like thoughts instantaneously. The use cases span across every company, every business...
开源大模型(large language model, LLM)介绍 作为如今LLM圈内绝对的领头羊,OpenAI并没有遵从其创立初衷,无论是ChatGPT早期所使用的的GPT3、GPT3.5还是此后推出的GPT4模型,OpenAI都因“暂无法保证其不被滥用”为由拒绝了对模型开源,开启了订阅付费模式。
[11] Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., Chen, Z., Tang, J., Chen, X., Lin, Y., Zhao, W.X., Wei, Z., & Wen, J. (2023). A Survey on Large Language Model based Autonomous Agents. ArXiv, abs/2308.11432. ...
利用LLM(Large Language Model)做多模态任务 大型语言模型LLM(Large Language Model)具有很强的通用知识理解以及较强的逻辑推理能力,但其只能处理文本数据。虽然已经发布的GPT4具备图片理解能力,但目前还未开放多模态输入接口并且不会透露任何模型上技术细节。因此,现阶段,如何利用LLM做一些多模态任务还是有一定的研究价值...
Model performance can also be increased through prompt engineering,prompt-tuning, fine-tuning and other tactics like reinforcement learning with human feedback (RLHF) to remove the biases, hateful speech and factually incorrect answers known as “hallucinations” that are often unwanted byproducts of...
Of course, an AI model trained on the open internet with little to no direction sounds like the stuff of nightmares. And it probably wouldn't be very useful either, so at this point, LLMs undergo further training and fine-tuning to guide them toward generating safe and useful responses. ...