Get a demo Sign up to be the first to access recordings fromInterrupt, The AI Agent Conference! Learn More From startups to global enterprises, ambitious builders choose LangChain products. Build LangChain is a composable framework to build with LLMs. LangGraph is the orchestration framework fo...
1. Google Search: "google", args: "input": "<search>" 2. Browse Website: "browse_website", args: "url": "<url>", "question": "<what_you_want_to_find_on_website>" 3. Start GPT Agent: "start_agent", args: "name": "<name>", "task": "<short_task_desc>", "prompt": ...
1.name:工具的名称,这里是 "scrape_website"。2.description:工具的描述。args_schema:工具的参数模式,这里是 ScrapeWebsiteInput 类,表示这个工具需要的输入参数,声明代码如下,这是一个基于Pydantic的模型类,用于定义 scrape_website 函数的输入参数。它有两个字段:target 和 url,分别表示用户给agent的目标和任务以...
1. Google Search: "google", args: "input": "<search>" 2. Browse Website: "browse_website", args: "url": "<url>", "question": "<what_you_want_to_find_on_website>" 3. Start GPT Agent: "start_agent", args: "name": "<name>", "task": "<short_task_desc>", "prompt": ...
Tutorial | Chat with any Website using Python and Langchain Prompt Engineering And LLM's With LangChain In One Shot-Generative AI Build a Custom Chatbot with OpenAI: GPT-Index & LangChain | Step-by-Step Tutorial Search Your PDF App using Langchain, ChromaDB, and Open Source LLM: No Open...
ResponseSchema(name="source", description="source referred to answer the user's question, should be a website.") ] 代码换成中文的话可能会更容易懂: response_schemas= [ ResponseSchema(name="回答", description="回答这个用户的问题"),
如今各类AI模型层出不穷,百花齐放,大佬们开发的速度永远遥遥领先于学习者的学习速度。。为了解放生产力,不让应用层开发人员受限于各语言模型的生产部署中..LangChain横空出世界。
Company website LangChain Academy: Comprehensive, free courses on LangChain libraries and products, made by the LangChain team LangChain docs: Python and TypeScript LangGraph docs: Python and TypeScript LangSmith docs Popular repositories Loading langchain Public 🦜🔗 Build context-aware reason...
cleanup="full", source_id_key="Website") 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 我只想在这里强调几个事情: 如果多次运行此代码,那么使用SQLRecordManager可确保不会将重复的文档上载...
When I ran the tutorial of "router chain" inlangchain website, the input query is: "What is black body radiation?" and the output of LLM is: '{ "destination": "physics", "next_inputs": "What is black body radiation?" }'