因此本文的主要目的是尝试以Label Studio作为前端、SAM作为后端来搭建半自动实例分割标注平台, 注意:Label Studio官方建议使用Docker来进行部署,但由于许多GPU租借平台本身(如本文采用的AutoDL)就使用了虚拟化,不可在内部再进行虚拟化部署,因此本文使用非docker的方案部署。 对于Label studio以及label-studio-ml-backend的详...
本文的目标是构建一个半自动实例分割标注平台,前端采用Label Studio,后端则是SAM。尽管Label Studio推荐Docker部署,但考虑到我们使用的AutoDL环境已经虚拟化,本文选择非Docker部署方法。环境配置部分,Label Studio通过pip安装,而label-studio-ml-backend则从GitHub克隆。SAM的配置与安装需参考官方文档,包括...