对于大多数CNN网络,我们一般是使用L2-loss而不是L1-loss,因为L2-loss的收敛速度要比L1-loss要快得多。 对于边框预测回归问题,通常也可以选择*方损失函数(L2损失),但L2范数的缺点是当存在离群点(outliers)的时候,这些点会占loss的主要组成部分。比如说真实值为1,预测10次,有一次预测值为1000,其余次的预测值为...
深度学习 L1 L2损失函数 损失函数l1 loss 损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项...
loss(x,y)=1n∑i=1n|yi−f(xi)| 什么时候使用? 回归任务 简单的模型 由于神经网络通常是解决复杂问题,所以很少使用。 L2Loss 也就是L2 Loss了,它有几个别称: L2 范数损失 最小均方值偏差(LSD) 最小均方值误差(LSE) 最常看到的MSE也是指L2 Loss损失函数,PyTorch中也将其命名为torch.nn.MSELoss...
smooth L1损失函数为: smoothL1(x)={0.5x2if|x|<1|x|−0.5 smooth L1损失函数曲线如下图所示,作者这样设置的目的是想让loss对于离群点更加鲁棒,相比于L2损失函数,其对离群点(指的是距离中心较远的点)、异常值(outlier)不敏感,可控制梯度的量级使训练时不容易跑飞。 smooth L1损失函数曲线 四、总结 从...
一、损失函数 nn.CrossEntropyLoss() 交叉熵损失函数 nn.CrossEntropyLoss() ,结合了 nn.LogSoftmax() 和 nn.NLLLoss() 两个函数。它在做分类(具体几类)训练的时候是非常有用的。 二. 什么是交叉熵 交叉熵主要是用来判定实际的输出与期望的输出的接近程度。举个例子:在做分类训练的时候,如果一个样本属于第...
SmoothL1Loss是一种平滑版本的L1Loss,它在预测值和ground truth之间的差别较小时使用L2Loss,在差别较大时使用L1Loss。公式为 max(0.5*(|y_true - y_pred|)^2, |y_true - y_pred| - 0.5)。优点是当预测值和ground truth差别较小时,梯度不至于太大,损失函数较为平滑;当差别大时,梯度...
1、l2_loss函数 tf.nn.l2_loss(t, name=None) 解释:这个函数的作用是利用 L2 范数来计算张量的误差值,但是没有开方并且只取 L2 范数的值的一半,具体如下: output = sum(t ** 2) / 2 2、tensorflow实现 importtensorflow as tf a=tf.constant([1,2,3],dtype=tf.float32) ...
L2 loss公式 L2 loss.jpg 下图是均方误差函数图,其中目标真值为100,预测值范围在-10000到10000之间。均方误差损失(Y轴)在预测值(X轴)=100处达到最小值。范围为0到∞。 L2 loss曲线.jpg smooth L1 loss 公式(6)衡量x的较大和较小的分界线是x=1,当然也可以采用其它值来做这个临界点。设\delta作为衡量预测...
l2 loss函数的参数l2 loss The l2 loss function, also known as the mean squared error (MSE) loss, is a commonly used loss function in various machine learning algorithms. It measures the average squared difference between the predicted and actual values. In this response, we will explore the ...
在CNN网络中,我们常选择L2-loss而非L1-loss,原因在于L2-loss收敛速度更快。若涉及边框预测回归问题,通常可采用平方损失函数(L2损失),但L2范数的缺点是离群点对损失值影响显著。例如,假设真实值为1,预测10次均约1,却有一次预测值为1000,此时损失值主要由异常值主导。为解决此问题,FastRCNN...