L2范数损失函数,也被称为最小平方误差(LSE)。总的来说,它是把目标值(Yi)与估计值(f(xi))的差值的平方和(S)最小化: S=∑ni=1(Yi−f(xi))2 L1范数与L2范数作为损失函数的区别能快速地总结如下: 总结:实际上我们发现,其实所谓的L1_Loss与L2_Loss与前面说的MSE、MAE损失函数一个1/n的区别,所以他们...
目标检测任务的损失函数由Classificition Loss和BBox Regeression Loss两部分构成。本文介绍目标检测任务中近几年来Bounding Box Regression Loss Function的演进过程。 其演进路线是 Smooth L1 Loss IoU Loss GIoU Loss DIoU Loss CIoU Loss EIoU Loss,本文按照此路线进行讲解。 L1/L2 Loss L1/L2 Loss 的定义 此...
对于大多数CNN网络,一般使用L2 loss,而不是L1 loss。因为L2收敛快。 对于边框预测回归问题,通常也可以选择L2,但是存在离群点时,离群点会占loss主要部分。比如说真实值为1,预测10次,有一次预测值为1000,其余次的预测值为1左右,显然loss值主要由1000决定。所以FastRCNN采用稍微缓和一点绝对损失函数(smooth L1损失)...
L1的缺点: 对于数据集的一个小的水平方向的...值的导数的绝对值仍然为1,而 learning rate 如果不变,损失函数将在稳定值附近波动,难以继续收敛以达到更高精度。L2loss其中 x 为预测框与 groud truth 之间 正则化 optimizer.zero_grad()loss.backward() optimizer.step()L1正则化 pytorch 目前只能 手动写入L2...
Smooth L1 Loss 平滑版的L1 Loss。仔细观察可以看到,当预测值和ground truth差别较小的时候(绝对值差小于1),其实使用的是L2 Loss;而当差别大的时候,是L1 Loss的平移。Smoooth L1 Loss其实是L2 Loss和L1 Loss的结合,它同时拥有L2 Loss和L1 Loss的部分优点。
损失函数之---L1 loss和L2 loss ---用于回归任务 1. L1 loss: 公式和求导公式: (带绝对值求导时,先去掉绝对值符号,再分情况求导) ... L1, L2以及smooth L1 loss 在机器学习实践中,你也许需要在神秘的L1和L2中做出选择。通常的两个决策为:1) L1范数 vs L2范数 的损失函数; 2) L1正则化 vs L2正则...
Smooth L1 Loss综合了L1和L2 Loss的优点,总结如下: 对比三种损失函数方程: 对比三种损失函数导数: 其中x表示预测值和真实值之间的误差值。 L2损失函数的导数是动态变化的,所以x增加也会使损失增加,尤其在训练早起标签和预测的差异大,会导致梯度较大,训练不稳定。
平滑L1损失函数与L1-loss的区别在于,L1-loss在0点处导数不唯一,可能影响收敛。而平滑L1损失通过在0点附近使用平方函数,使得其更加平滑。以下是三种损失函数的公式比较:L2 loss:公式:...L1 loss:公式:...Smooth L1 loss:公式:...Fast RCNN指出,与R-CNN和SPPnet中使用的L2损失相比,平滑...
L1 loss曲线.jpg L2 loss 均方误差(MSE),二次损失 均方误差是最常用的回归损失函数,它是我们的目标变量和预测值的差值平方和。 L2 loss公式 L2 loss.jpg 下图是均方误差函数图,其中目标真值为100,预测值范围在-10000到10000之间。均方误差损失(Y轴)在预测值(X轴)=100处达到最小值。范围为0到∞。
SmoothL1Loss是一种平滑版本的L1Loss,它在预测值和ground truth之间的差别较小时使用L2Loss,在差别较大时使用L1Loss。公式为 max(0.5*(|y_true - y_pred|)^2, |y_true - y_pred| - 0.5)。优点是当预测值和ground truth差别较小时,梯度不至于太大,损失函数较为平滑;当差别大时,梯度...